Sustainable Energy and Livelihoods

A collection of 65 livelihood applications
SELCO Foundation seeks to inspire and implement solutions that alleviate poverty by improving access to sustainable energy to underserved communities across India in a manner that is socially, financially and environmentally sustainable.

SELCO Foundation demonstrates the role of clean energy and energy efficiency across areas of wellbeing, livelihoods, health and education.

*All pictures in this document are from SELCO Foundation implementation sites unless otherwise stated.
INDEX

Pages 1-18 TEXTILE
1. Cotton Picker 8. Silk Spinning
3. Solar Charkha
4. Green Looms
5. Yarn Winding
6. Beam Winding
7. Silk Reeling

Pages 19-38 AGRICULTURE
10. Snake Repeller
11. Monkey Repeller
12. Solar Fencing
13. Elephant Repeller
14. Portable Solar Pumps
15. Head Lamps
16. Fisherman Lights
17. Lac Pruner
18. Sprayer
19. Chaff Cutter
20. Rubber Tapping
21. Paddy Thresher
22. Dal(Pulse) Mill
23. Millet Mill
24. Flour Mill
25. Tamarind De-Seeder & Huller
26. Chilli Grinding
27. Turmeric Grinding
28. Rice Huller & Polisher
29. Rice Mill
30. Cold Storage

Pages 39-46 ANIMAL HUSBANDRY
31. Egg Incubator
32. Milking Machine
33. and 34. Milk Testing and Weighing

Pages 47-64 FOOD PROCESSING
36. Flour Mixing
37. Pani Puri (Snack) Making
38. Sweet Meat Making
39. Popcorn Making
40. Oil Extractor
41. Sugarcane Juicer
42. Sweet Lime Juicer
43. Puffed Rice
44. Popcorn Making Machine
45. Banana Chips Making Machine
46. Butter Churner
47. Wet Grinder

Pages 65-74 BLACKSMITHY
49. Power Hammer
50. Angle Grinder

Pages 75-78 CARPENTRY
51. Side Planer
52. Power Drill
53. Wood Lathe Machine

Pages 79-84 POTTERY
54. Pottery Wheel
55. Blunger & Pugmill
56. Efficient Kiln

Pages 85-90 COTTAGE INDUSTRIES
57. Coir Ratt Spinning
58. Rope Spinning
59. Cotton Wick Making
60. Stone Polisher
61. Paper Plates

Pages 91-102 SERVICES & RETAIL
62. Refrigerators
64. Air Compressors
65. Integrated Energy Centres

63. Digital Services
ROLE OF SUSTAINABLE ENERGY IN SCALING [ECOSYSTEMS FOR] INNOVATIONS IN LIVELIHOODS

Poverty and climate risk are the two most important issues that are increasing social unsustainability and leading to more disparities across geographies. Both are man-made and solvable using sustainable energy as a catalyst. Replicable eco-system processes, banking on sustainable energy that encourage various income generating activities for the marginalized populations can help solve the poverty and climate crisis.

In recent times, majority of the innovations in livelihood and productivity have been focused on a centralized industrial scale- whose benefits do not trickle down and the ownership does not transfer to the poor. Innovations for the poor have to be decentralized and customized. At the same time, ‘innovation’ often focuses on technology alone, and not on processes around ownership models, financial models, supply chain and service delivery models; that allow for sustained impact from the design and deployment of the technology.

Poverty and climate risk are the two most important issues that are increasing social unsustainability and leading to more disparities across geographies. Both are man-made and solvable using sustainable energy as a catalyst. Replicable eco-system processes, banking on sustainable energy that encourage various income generating activities for the marginalized populations can help solve the poverty and climate crisis.

For e.g.:

Design, development and deployment of a solar powered highly efficient tailoring machine that is optimized for a particular tailor’s level of productivity is needed, however this alone will not create the desired impact if the tailor does not have the skills to make market ready products or the market to sell his/her products.

Further, for low income micro entrepreneurs, it is imperative that the precious profit margins are spent to build assets and cutting down on operational expenses. Thus, business modeling to understand cashflows, and tailor financial products also need to be considered providing the sustainable technology solution.

Today, more than two billion people live under $2 dollars a day, either in poverty or extreme poverty*. And many of them lack access to reliable energy, that could have enabled them to explore options of increased incomes. More than 80% of this group lives in sub-Saharan Africa or in the developing economies of Asia. The relationship between energy gap and livelihood opportunity gap is very visible. There are ways these gaps or problems can be solved.

ECOSYSTEM NEEDS

- Financing based on perceived cash flows
- Partnerships with local financial institutions
- Affordability of cost of capital
- Appropriate equipment machinery
- Appropriate ownership model (individual operations; community owned)
- Access to efficient technology that is built long term asset/ investment
- Technologies which cater to the social need and capacity/impact of the enterprise/entrepreneur
- Last mile supply chains and after sales service

User & Livelihood’s Need

- Awareness of infrastructural/infrastructure in micro and small enterprises financial schemes policies
- Sustainable energy recognition in sale of sector specific schemes (agriculture, manufacturing etc)
- De-risking tools to unlock financing
- Access to stable input sources (backward linkages)
- Access to compliant or adapting or current linkages to sell end products

Policy

- Awareness on alliances to support micro and small enterprises existing vulnerable businesses
- Training to start new sustainable businesses
- Knowledge transfer to best performing practices

Technology Innovation

- Access to efficient technology which will build long term asset/ investment
- Technologies which cater to the social need and capacity/impact of the enterprise/entrepreneur
- Last mile supply chains and after sales service

Channels/Linkages

- Access to efficient technology that is built long term asset/ investment
- Technologies which cater to the social need and capacity/impact of the enterprise/entrepreneur
- Last mile supply chains and after sales service

Financing Solutions

- Financing based on perceived cash flows
- Partnerships with local financial institutions
- Affordability of cost of capital
- Appropriate equipment machinery
- Appropriate ownership model (individual operations; community owned)

In recent times, majority of the innovations in livelihood and productivity have been focused on a centralized industrial scale- whose benefits do not trickle down and the ownership does not transfer to the poor. Innovations for the poor have to be decentralized and customized. At the same time, ‘innovation’ often focuses on technology alone, and not on processes around ownership models, financial models, supply chain and service delivery models; that allow for sustained impact from the design and deployment of the technology.

For e.g.:

Design, development and deployment of a solar powered highly efficient tailoring machine that is optimized for a particular tailor’s level of productivity is needed, however this alone will not create the desired impact if the tailor does not have the skills to make market ready products or the market to sell his/her products.

Further, for low income micro entrepreneurs, it is imperative that the precious profit margins are spent to build assets and cutting down on operational expenses. Thus, business modeling to understand cashflows, and tailor financial products also need to be considered providing the sustainable technology solution.

(more details on the sewing machine ecosystem under the textile section in the following pages).
The need of the hour is to catalyze and enhance these missing ecosystem factors in order to demonstrate the linkage between sustainable energy and development: thus, demonstrating the capability of decentralized energy to transform communities.

SELCO Foundation, in partnership with numerous experts and practitioners, have developed over 65 livelihood technologies and over 100 processes across these livelihoods around financial and social models. In the past 5 years, itself, SELCO has worked with 2257 micro entrepreneurs, out of which 1434 micro entrepreneurs have improved access to sustainable energy driven livelihood solutions in just the financial year April 2018 - March 2019.

Out of these, about 40% are micro entrepreneurs who have diversified and expanded their businesses, particularly shops by adding services that were not accessible to them and their customers due to lack of energy.

30% have been small scale vulnerable entrepreneurs who were suffering from opportunities lost, due to time consuming manual processes, or unavailability of expensive labour. Majority of micro entrepreneurs in this category have moved from a manual to a technical solution for the first time.

While a huge potential lies in enhancing and decentralizing agriculture value chains through energy, financing has been a barrier to scaling. 9% of the solutions were implemented for agri related livelihoods.

For long term effective solutions to evolve, customized ecosystems have to be established and innovations need to happen in technology, finance and delivery models. The following sections demonstrate some of these processes built in partnership with micro-entrepreneurs and eco-system stakeholders for 65 critical energy-livelihood links identified.

It is our endeavor to document these interventions in a manner that demonstrates how parts of the ecosystem can be pieced together contributing to a more asset based solution. More importantly, that the reader can adopt or adapt these various parts to replicate and scale similar interventions in other contexts.
Textile
Revolution in seeds, farm practices, advanced ginning and never-ending developments by the Indian and global spinning machinery sector have been making the entire cotton value chain believe that India can take the global lead in cotton by 2020.

However, large-scale mills with large scale machinery, hybrid long staple cotton and private players now dominate the sector which was earlier a decentralized hand spun sector whose history is embedded in the freedom struggle in India. Being a skill-based, labour intensive industry even today, handlooms are the second largest employer provider after agriculture, providing livelihood opportunities. Most weavers belong to poor and marginalized communities who are at the verge of being wiped out due to large scale mills and powered machinery: machineries made for centralization of manufacturing processes.

After studying the cotton sector in-depth from picking of cotton by farmers to the cloth woven and stitched, it was concluded that there is a need for decentralized machinery powered by renewable energy to resuscitate the sector, develop innovative technology while trying to revive the skills and crafts involved in this space.

COTTON PICKING
Harvesting of cotton buds

- **User Group**: Cotton farmers and farm labourers
- **Energy Intervention**: Hand-held cotton picking machine

GINNING
Separation of cotton fibres and seeds

- **User Group**: Mill workers at large scale mills or by weavers at small scale units
- **Energy Intervention**: Ginning machine for short staple cotton

SPINNING
Spinning of yarn into threads

- **User Group**: Skilled spinners at decentralized or centralized units
- **Energy Intervention**: 'Charkhas' (Spinning Machines for Cotton), Silk Reeling & Spinning

WEAVING
Weaving of threads into cloth

- **User Group**: Skilled weavers working at decentralized or centralized units
- **Energy Intervention**: Looms for weavers, Yarn Winding, Beam Winding & Weaving

SEWING
Stitching of cloth or other materials for various purposes

- **User Group**: Individual home based entrepreneurs/ tailoring units
- **Energy Intervention**: Sewing machines of various capacities

TECHNICAL SOLUTION
- Solar powered hand held cotton picking machine with a collection bag which will directly collect the picked cotton
- A mounted LED on the device for better visibility
- 12V storage battery with a carrying pouch that can be hung on the shoulder and strapped around the waist

1. Cotton Picker

LACK OF LABOUR
Presently, cotton picking is largely practiced manually in farms where daily wage labourers are hired to carry out the task. Harvest season for Cotton
Nov-Jan

TIME CONSUMING, DRUDGERY PRONE AND RISK OF INJURIES
This manual craft requires labourers to individually hand pick every cotton bud on each plant in any given size of field. This process involves a lot of drudgery due to posture, high load of picked cotton and abrasion of fingers by the sharp points of dried bracts and sharp tools used.

<table>
<thead>
<tr>
<th>Harvest season for Cotton</th>
<th>Nov-Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Collection of Cotton</td>
<td>45-50 kgs per day per person</td>
</tr>
</tbody>
</table>

UNRELIABLE POWER SOURCE
Cotton picking machines require batteries to be charged which becomes an issue in unelectrified and areas with poor quality of power.

| Operation Hours per day per person | 6-8 hours |

<table>
<thead>
<tr>
<th>Energy System</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR MODULE (Wp)</td>
</tr>
<tr>
<td>BATTERY (Ah)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>CAPACITY (W)</td>
</tr>
<tr>
<td>RPM</td>
</tr>
<tr>
<td>BACKUP HOURS</td>
</tr>
</tbody>
</table>

Picking per person per hour +25%

Photo: Cotton Picker solution being tested by users in Bailhongal, Karnataka
Today, ginning is an entirely centralized process being done through large scale machinery. The machinery is designed to support long staple cotton i.e. genetically modified cotton which has dominated the cotton market in the country. Short staple cotton (desi cotton) is not being cultivated as much due to lack of market demand and the ones growing it are having to manually gin the cotton due to lack of machinery which is very time and labour intensive.

A solar powered DC energy efficient small scale ginning machine which can support short staple (desi cotton) farmers and weavers.

IMPAKT

LACK OF DECENTRALIZED MACHINERY

Today, ginning is an entirely centralized process being done through large scale machinery. The machinery is designed to support long staple cotton i.e. genetically modified cotton which has dominated the cotton market in the country. Short staple cotton (desi cotton) is not being cultivated as much due to lack of market demand and the ones growing it are having to manually gin the cotton due to lack of machinery which is very time and labour intensive.

2. Ginning Machine

WASTAGE OF BY PRODUCTS

The seeds and the by-products of the long staple ginned cotton is of no use and is discarded.

GEOGRAPHIC CONSTRAINTS

In villages geographically distant from mills, farmers have to incur heavy transportation cost for ginning their cotton.

ENCOURAGING LOCAL VARIETY COTTON FARMERS

Availability of decentralized machinery can encourage farmers to grow more of short staple cotton (desi cotton) which is more sustainable and less water intensive which can benefit farmers especially in severely drought hit and drought prone areas.

VALUE ADDITION

For desi cotton farmers, this ginning machine brings value addition in the form of by products which are not accessible to them through centralized ginning.

The by-products of this ginned cotton i.e. seeds and lint can be used either through direct sales, re-sowing the cotton seeds, pressing the seeds for oil or to make cotton seed cakes. This allows for greater returns on the processed cotton.

IMPACTS

VALUE ADDITION

For desi cotton farmers, this ginning machine brings value addition in the form of by products which are not accessible to them through centralized ginning.

The by-products of this ginned cotton i.e. seeds and lint can be used either through direct sales, re-sowing the cotton seeds, pressing the seeds for oil or to make cotton seed cakes. This allows for greater returns on the processed cotton.

ACCESS TO SMALL SCALE MACHINERY

Access to ginning machinery for short staple cotton farmers and weavers as opposed to manual ginning. Time and money spent on traveling to mills by farmers will also be conserved.

ENCOURAGING LOCAL VARIETY COTTON FARMERS

Availability of decentralized machinery can encourage farmers to grow more of short staple cotton (desi cotton) which is more sustainable and less water intensive which can benefit farmers especially in severely drought hit and drought prone areas.

SELF SUSTAINABLE UNITS

To build self sustainable units where the entire value chain from pre-processing of cotton to weaving and stitching can all be done and directly sold.
3. Solar Charkha

LACK OF TECHNOLOGIES
Charkha, a symbol of resistance during the freedom struggle has been used to spin cotton fibres into yarn for centuries. However, there has not been any technological improvements in the design.

Year of manufacture of the most commonly used machine
1965

DRUGGERY & FATIGUE
Using the charkha involves hard labour work and is very challenging for the spinners, as most spinners in the country are elderly women.

Rotations of hand for every 1000 m of cotton spun
300 Rotations

LOW PRODUCTIVITY AND INCOME
The hand shaft rotates at varying values of about 35-40 rpm, which results in low productivity resulting in low income

Production of spun cotton per day manually
25

TECHNICAL SOLUTION
The efficient ambar charkha intervention has two models:
- 10 spindle ambar charkha with a PMDC motor and solar system
- A retrofit model for the older 6 and 8 spindle ambar charkhas where the PMDC motor can be plugged in and supported by a solar system
- Flexibility to increase the speed up to 75 rpm with a speed controller resulting in increase in production

Production per day
40-45 hanks (1 hank = 1000 m)

4. Green Looms

Weaving is one of the most wide spread home-based livelihood practices in India across almost every state with weaving clusters steeped in textile traditions. There is a wide variety in the raw materials used, method of weaving, type of looms used, designs on the fabrics etc.

Cotton weavers are mainly limited to Government run societies, due to lack of availability of a supply chain and highly centralised pre-weaving processes, which has led to a decline in number of individual cotton weavers in recent years.

<table>
<thead>
<tr>
<th>Energy System</th>
<th>Solar Module (Wp)</th>
<th>Battery (Ah)</th>
<th>Charge Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250</td>
<td>1920</td>
<td>20A 24V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor</th>
<th>Type</th>
<th>Capacity</th>
<th>RPM</th>
<th>Backup Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMDC</td>
<td>80 W</td>
<td>1500</td>
<td>8</td>
</tr>
</tbody>
</table>

IMPACTS

REDUCTION IN DRUGGERY
There is complete elimination of drudgery and fatigue as the spinners do not need to spin the wheel for long periods of time.

INCREASE IN PRODUCTIVITY AND INCOME
Considerable increase in productivity as it allows a single spinner to use two charkhas at the same time.

VARIETY OF COTTON
With the speed controller, varying speeds are available allowing the spinners to use different types of cotton yarn and counts.

CREATION OF EMPLOYMENT
With ease in usage, this can be adopted by many women as a home-based livelihood opportunity creating more employment.

Percentage increase in production amounts
+80% No. of hanks spun

Increase in total income earned by a spinner per day
+157% Using two charkhas
EXTREME DRUDGERY
In the form of heavy stress and strain experienced by the skilled weavers due to the monotonous repetitive movements causing early fatigue, knee issues, shoulder issues, back pain etc. Drudgery in weaving one Indian sari 18,000 limb movements for 25 kms of thread

LOW EFFICIENCY
In case of the hand loom there is low efficiency coupled with intensive physical intervention, resulting in low productivity and lower income levels.

A DYING VOCATION AND SKILL
The number of skilled weavers in the country is diminishing rapidly due to them resorting to unskilled labour work as it pays more. The current generation is also not interested in adopting the skill due to its tedious physical involvement and disproportionate lower incomes.

MANUAL EFFICIENT LOOM
An innovative custom designed manual efficient loom where instead of four motions, one motion is done for one pick.
- The machine comes with an iron body which makes it more sturdy and easy to maintain.
- Fly Wheel integrated with the loom which provides energy in the working stroke and absorbs energy in the idle stroke conserving energy on a whole expended by the weavers.
- It comes in different sizes based on the requirement of the weaver and the size of the cloth.

SOLAR EFFICIENT LOOM
The manual efficient loom, in which the one motion is powered with solar energy.
- The PMDC motor is connected to the flywheel through a flat belt drive due to which the weavers do not need to apply any force.
- Speed controller is integrated with the system to give the weaver flexibility to adjust the speed according to the type of fabric woven.

DRIVE BY WIRE LOOM
A solar powered loom which retains all the four limb motions allowing flexibility for the weavers.
- The four motions are powered by a small retrofit motor which can be attached to any existing traditional wooden frame looms as well.
- This allows the weavers to dictate the loom and in the process keeps their artistry alive while minimizing the drudgery.

SOLAR MODULE (WP)
400
BATTERY (Ah)
3040
CHARGE CONTROLLER
20A 48V
TYPE
BLDC
CAPACITY
450W
RPM
3000
BACKUP HOURS
8

5. Yarn Winding Machine
A yarn bobbin is a collection of string or material that is wound around a cylindrical piece and used for multiple purposes in the textile industry. The targeted end users are groups who bridge the gap between larger yarn bobbin suppliers to create smaller yarn bobbins which can be sold for a variety of uses to different market groups such as garment makers.

LACK OF EFFICIENCY DUE TO DRUDGERY
Yarn winding machines are currently all manually operated, and function by turning the flywheel which sets the machine in motion, inflicting a large amount of drudgery. The average person is able to only maintain an efficient speed for a fixed period of time which limits the output produced.

TECHNICAL SOLUTION
To solve this issue, a motorised solution was provided to the end user by mounting a 0.25 HP AC motor directly on the frame of the machine. The motor is connected via a belt to the flywheel and a speed controller is used to control its speed.

IMPACT
The switch from manual to automated leads to a boost in income due to the autonomy of the machine, as it is able to run for 10 hours continuously at a higher RPM in comparison to a manual operated machine.

By working for 7 hours per day, for 27 days a month on an average a user can earn INR 25,000 per month. This equates to an hourly working rate of INR 152 per hour. With 3 hours of back-up, an extra INR 358 per day is earned. However the true value addition is in the quantity of the output produced and income generated as it is likely to be much higher than a manual process as the end users are able to run the new motor at a higher RPM.

6. Beam Winding/Warping Machine
Beam winding is one of the weaving activities which has to be carried out before the weaving process starts. The beam warping machine is used for this process and is a basic locally fabricated highly geared large machine, designed simply to wind large stretches of material into a roll.

In case of the manual, the four limb motion and the two pedal motion causes immense drudgery leading to low productivity and income. Post intervention, the income and productivity has a two-fold increase with ease in operation.

Beam winding machine
Percentage increase in production amounts and income earned per day +87.5% No. of metres woven

Beam loom operators give dyed yarns in the form of continuous hanks, bundle of yarn, to be wound on the warping beam for the weaving process. The end-user dries it, and winds it on the drum roughly by hand. This process takes one day and on the second day, they use a highly geared motor to wind the yarn from the drum to the warping beam at a speed of roughly 1 to 6 rpm through a 1440 rpm, 0.5 HP, AC 1 Phase motor.
TECHNICAL SOLUTION

7. Silk Reeling, 8. Silk Spinning

Due to regular power cuts, the weaving work comes to a standstill for 2 to 3 hours, forcing them to make the time up in the night or the next day, delaying the entire weaving process and leading to inconvenience and low productivity.

An inverter based solution, providing backup for 3 hours was provided so that production is maintained even during power cuts, preventing them from having to make up the loss of production at inconvenient times.

A DC based solution with 8 hours backup was provided as well for those communities who do not have to depend on grid connection and want a higher backup of the product.

The end users are earning an average of INR 16,500 per month with this solution by working 25 days a month, with only 15 days of effective usage of the machine, at 8 hours a day. One beam takes 2 days and for each beam they get paid INR 1000 - 1600 depending on the material wound like polyester silk, pure silk, etc.

By providing 3 extra hours of backup, it can be concluded that this will equate to an additional INR 6210 per month.

- Back up time of 3 hours and 8 hours
- Gear arrangement converting low torque high rpm to high torque low rpm output

SILK SPINNING & RE-REELING

Energy System	SOLAR MODULE (Wp)	60
BATTERY (Ah)	70	
CHARGE CONTROLLER	10A 12V	

| Motor |
TYPE	PMDC
CAPACITY	15 W
BACKUP HOURS	5

Low Productivity and Inability to Diversify

It takes a lot of time to stitch one product when stitching in a manual machine which leads to low productivity and lesser income or lower orders. As work moves very slowly, it is difficult to engage in alternate business activities.

POWER CUTS

There are a lot of power cuts which make it difficult to use AC machines as they cannot be depended on independently.

HEALTH ISSUES BY USING MANUAL MACHINES

Physical drudgery is involved in using of manual sewing machines and it affects the health of the user.

- 1000+ No. of repetitive leg movements per meter of straight stitch
- 5000 INR Amount lost per month due to lack of power

9. Sewing Machines

Tailoring is one of the most important livelihoods in India. Traditional tailors who generally serve local customers in small cities and villages use a manual sewing machine. The scale of tailoring operations can vary depending on the demand generated in the market for their service.

Local tailors also serve institutional demands like that of schools and other peak season demands. To compete on the existing textile market and achieve higher productivity, traditional manual powered machines have been replaced by motorized sewing machines. In places with little or no grid, it is difficult to meet the increasing demands.

There is another segment in the tailoring industry which practices tailoring on a large scale. Bigger size heavy-duty industrial sewing machines are commonly used for such purposes. The output from them generally do not serve the local market but exported to other markets. The industrial sewing machines vary in size and complexity and cater to different needs of the market.

10. Tailoring as a Livelihood

For 5 days it takes 24000 meter of straight stitch

- 20000 INR Amount earned in a month
- 1000+ No. of repetitive leg movements per meter of straight stitch

11. Technical Solution

Due to regular power cuts, the weaving work comes to a standstill for 2 to 3 hours, forcing them to make the time up in the night or the next day, delaying the entire weaving process and leading to inconvenience and low productivity.

An inverter based solution, providing backup for 3 hours was provided so that production is maintained even during power cuts, preventing them from having to make up the loss of production at inconvenient times.

A DC based solution with 8 hours backup was provided as well for those communities who do not have to depend on grid connection and want a higher backup of the product.

The end users are earning an average of INR 16,500 per month with this solution by working 25 days a month, with only 15 days of effective usage of the machine, at 8 hours a day. One beam takes 2 days and for each beam they get paid INR 1000 - 1600 depending on the material wound like polyester silk, pure silk, etc.

By providing 3 extra hours of backup, it can be concluded that this will equate to an additional INR 6210 per month.

- Back up time of 3 hours and 8 hours
- Gear arrangement converting low torque high rpm to high torque low rpm output

Percentage increase in production due to automation

38%
TYPOLOGIES OF TECHNICAL SOLUTIONS

HOME BASED
- **TYPE OF STITCHING**: Normal tailoring with straight stitching
- **TYPE OF MATERIALS**: Cotton, silk, synthetic, nylon, polyester
- **PRODUCTS MANUFACTURED**: Clothes, alteration of clothes
- **MARKET LINKAGE**: Individual orders and orders from shops

SHOP BASED
- **TYPE OF STITCHING**: Normal tailoring with straight stitching
- **TYPE OF MATERIALS**: Plastic, cloth
- **PRODUCTS MANUFACTURED**: Clothes, bags
- **MARKET LINKAGE**: Individual orders and bulk orders from centres which is passed on to home based tailors. Takes market linkage risk

COTTAGE INDUSTRY
- **TYPE OF STITCHING**: Industrial tailoring with high speed straight stitching
- **TYPE OF MATERIALS**: Leather, denim, plastic, cloth, jute
- **PRODUCTS MANUFACTURED**: Bags, uniforms, denims, gunny bags
- **MARKET LINKAGE**: Direct bulk orders from retailers which is given to the tailors employed at the centre

FINANCIAL SOLUTION

Multiple financial approaches are taken based on context specific cases. Various approaches include credit from nationalized banks, leading banking correspondents, Micro Finance Institutions and Cooperatives.

An EMI range of 12-15% is fixed with an average tenue of 2 years and a 20-25% margin money support. Post the intervention, the net income has almost doubled including the offsets from EMI payments. This increase is sufficient to service the EMI. The solution becomes affordable to the end user.

IMPACTS

- **INCREASED INCOME, SAVINGS AND DIVERSIFICATION**: Income has doubled due to efficiency increase, reliability on uninterrupted power, and the ability to meet orders on time. With the double income and EMI payments, savings have also increased. In the case of adoption of fashion stitch and industrial sewing machines, the entrepreneurs have been able to diversify the kind of materials used and products made.

- **INCREASE IN INVESTMENTS**: With increase in income, it has been observed that the entrepreneurs have been able to invest in household assets, ability to pay for their children’s education, enrolment in insurance or other welfare programs and more involvement in community participation.

- **IMPROVED WELL BEING**: With the reduction in drudgery, poor impact on health has drastically reduced. With increase in efficiency, there has been a lot of time saved which has reduced the amount of stress and fatigue allowing the beneficiary to focus on other aspects of life as well without it affecting the income levels.
CASE STUDY

Ramsingh Kabadi
Tailoring Entrepreneur

Ramsingh Kabadi is a 35-year-old male entrepreneur from Badchatrang village in Kalahandi District of Odisha. He used a manual sewing machine and was unable to keep up with his orders, especially during wedding and festival seasons. Even though Ramsingh had electricity at home, he did not want to shift to a motorized sewing machine because of the erratic and poor supply of the grid and instead, wanted to get a solar system installed.

Ramsingh needed financial assistance to get the system installed and it was challenging for him as he did not have a bank account. The team facilitated a loan for him from MUDRA (Micro Units Development and Refinance Agency) bank loan from Syndicate Bank, a financial product focussed on financing small businesses. He recollected that approaching the bank for getting assistance and completing the formalities itself was overwhelming for him as it almost took about five months to complete the whole process.

Today, Ramsingh is able to meet the seasonal demands and keep up with the orders, resulting in higher income. Increasing his productivity by 1.5 times per hour, Ramsingh has seen an immediate increase of INR 2500 per month. His earnings are expected to go higher during the festival season. Further, a solar light in his shop allows him to work through later in the evenings as well thus, allowing him the flexibility to take large number of orders.

Six months after the intervention, Ramsingh has set up a tailoring centre for the women in the Sittilingi valley area, due to which the failures were very common in the Sittilingi valley area. Most of the entrepreneurs view children’s education as a priority and reported that they would like their children to complete their studies, and use the extra earning to support their education.

All entrepreneurs reported that there is a substantial increase in their daily earnings, since the solar system has been installed. This money is often used to clear off financial liabilities they had incurred previously, to improve living conditions by purchasing household items or renovating the house. The solar system has been installed in the centre where seven to eight women, from the nearby villages, work. They are paid as per the work they complete, on a pay per piece basis. The women reported that solar powering the machines has helped them to complete more work and they are able to earn more. The completed products are sold through exhibitions and Porgai’s online store.

Due to having an outstanding loan in Syndicate Bank, she decided to approach Bank of India whose bank manager agreed to provide her with the loan as the machine would help increase her income.

She even had good repayment history with the bank which helped convince the manager. The loan was sanctioned immediately within a day. She earns INR 300 per day on an average and stitches only ladies clothes. A margin money support of INR 5000- INR 8000 bracket was provided, considering her situation as the entrepreneur had potential.

After the loan approval, within two days, the installation was done. Initially through manual pedalling, she used to stitch only 2 blouses and now is able to stitch 4 blouses without much fatigue. The light provided with the system has helped her a lot during power cuts in the evenings. Despite of so much struggle at such a young age and overcoming it all, she is a source of inspiration to many others.
CASE STUDY

Nazir
Weaving Entrepreneur

Nazir ji is a master handloom weaver in Belgaum, Karnataka. A solar loom was installed at his workshop in November 2015. At the time Nazir ji had an order to produce a large number of 1.5 meter towels. In a 6-9 hour shift he was able to make 10-11 towels and a profit of Rs. 200 per day.

In the first 3 months after the installation of the solar loom he was able to make the same number of towels per day on the solar loom. After the third month there was a gradual increase in his rate of production and by the sixth month he was able to reach the optimal rate of 20-21 towels per day thereby doubling his productivity and income.

Moreover, the loom also comes with a solar light allowing him to work even past sundown. This gives him more time in the day to do his pre-loom operations such as reeling and warping.

CASE STUDY

Mahanthesh
Weaver

Mahanthesh hails from Chadchana village and works a day job with a Karnataka Handlooms Development Commission centre. KHDC pays him on the basis of a meter of finished fabric at the end of the day. He also weaves at his home in the evenings for additional income. Earlier, he used to take 2 months to finish weaving 200 metres of yarn using a Frame loom but after switching to the efficient loom, he is able to finish weaving the same yarn in 1 month, effectively improving his productivity and also the quality of the fabric.

CASE STUDY

Mangala
Melkote's traditional spinners

Melkote is a village in Karnataka where weaving was the primary occupation. Traditional weaving had been carried out by the hundreds of weavers housed there and also had a popular item of clothing called the 'Melkote lungi.' From sourcing of cotton, ginning, spinning, weaving, natural dyeing to finishing of the cloth would all be done out of this village. In a village with 500 households, each home had at least one spinner. However, due to poor and irregular wages, drudgery, unsupportive government policies, there were no spinners left in Melkote.

Jananapada Seva Trust, a Gandhian khadi organization based out of Melkote decided to revive spinning in the village by adopting the solar charkha. The first one was given to one of the 357 members, Mangala, a housewife with no source of income. Post adopting the solar charkha, she is now able to earn INR 6000 per month and also take care of other household activities very comfortably. After this intervention was introduced, five more women are coming back to spinning using the solar charkha.

CASE STUDY

Weaving Collective in Gillesugar, INGRID

Two looms were installed in Gillesugar, a refugee settlement in the premises of INGRID. It was to provide an alternate employment opportunity to the women who work as daily wage labourers in agriculture or construction. A nine-month training was given to ten women under two master weavers with a stipend. Now these women are able to manage the procurement of yarn and production of fabric by themselves. These women have become self-sufficient by weaving sarees, shirts, towels, stoles and earning more than their previous daily wages.

CASE STUDY

Mahanthesh
Weaver

Mahanthesh hails from Chadchana village and works a day job with a Karnataka Handlooms Development Commission centre. KHDC pays him on the basis of a meter of finished fabric at the end of the day. He also weaves at his home in the evenings for additional income. Earlier, he used to take 2 months to finish weaving 200 metres of yarn using a Frame loom but after switching to the efficient loom, he is able to finish weaving the same yarn in 1 month, effectively improving his productivity and also the quality of the fabric.

CASE STUDY

Mangala
Melkote's traditional spinners

Melkote is a village in Karnataka where weaving was the primary occupation. Traditional weaving had been carried out by the hundreds of weavers housed there and also had a popular item of clothing called the 'Melkote lungi.' From sourcing of cotton, ginning, spinning, weaving, natural dyeing to finishing of the cloth would all be done out of this village. In a village with 500 households, each home had at least one spinner. However, due to poor and irregular wages, drudgery, unsupportive government policies, there were no spinners left in Melkote.

Jananapada Seva Trust, a Gandhian khadi organization based out of Melkote decided to revive spinning in the village by adopting the solar charkha. The first one was given to one of the 357 members, Mangala, a housewife with no source of income. Post adopting the solar charkha, she is now able to earn INR 6000 per month and also take care of other household activities very comfortably. After this intervention was introduced, five more women are coming back to spinning using the solar charkha.
Agriculture
AGRICULTURE

Agriculture practices in many developing countries, including India, continue to rely on animal and human energy. This can often be due to lack of reliable modern energy, as well as lack of affordable technology, innovated for the last mile small and marginal farmers. This significantly hampers the potential gains in agricultural productivity.

As per Registrar General of India & Census report 2011, the total farmers or cultivators population of India is 118.7 million (2011) & 144.3 million agricultural workers/labourers which consist 31.55 million of the total rural population.

Pest Management

In parts of India, and across the world, farmers struggle to save their crops from animals such as elephants, monkeys and blue bulls; some responsible for destroying 60-70% of the crops in regions where they thrive in abundance.* While several technologies can be used by farmers, energy is often a gap. In farmlands, where these technologies are required, specifically in or near forested regions, grid power failure or intermittent power is also a common occurrence.

Crop loss for farmers mean loss in investment, because of which they employ varying unsustainable measures

Farmers change cropping patterns to evade the animals

To combat the menace, farmers have used conventional techniques like electrocution to keep the animals away. In some cases, farmers resort to shooting or killing the animals as well.

www.downtoearth.org

AUDITORY REPELLENTS

Auditory Repellents

Are marked as either ultrasonic, sonic or biosonic calls which makes the targeted animals uneasy

TACTILE REPELLENTS

The principle behind these devices is they create painful or uncomfortable stimulus upon contact - Mild Electric shock

VISUAL REPELLENTS

The principle behind these devices is that usage of flashing lights or large movement of objects - is found to effectively repel wild animals like elephants, boars etc.

olfactory repellents

Using the general principle of odour detection to repel or stimulate olfactory mediated behaviour - Eg. Fish Oil

down to earth.org
The solar powered snake repeller device utilises ultrasonic pulses every 30 seconds that sends vibrations through the ground in a 10 feet radius. Snakes are sensitive to these lighter vibrations and are often deterred from the source. As a result, farmers can strategically place these devices within their fields (depending on size) and can completely deter snakes from entering their fields.

Electric fencing is used to avoid damage of agricultural produce by animal attacks. It works by emitting vibrations through the ground in a 10 feet radius. Snakes are sensitive to these lighter vibrations and are often deterred from the source. As a result, farmers can strategically place these devices within their fields (depending on size) and can completely deter snakes from entering their fields.

Solar fencing is mostly seen in remote forest areas where traditional habitats have seen land use change, leading to clearing of forests and converting them into farmland. The unintended consequences are the ever increasing loss to farmers who find themselves crossing paths with elephants, leading to loss of life and crops - resulting in loss of incomes.

As a result, the farmers suffer a loss in income which is barely compensated for by the government. Additionally, any efforts made to repel elephants are often thwarted by animal rights entities who claim the farmers are using improper and cruel methods.

The Ultrasonic Sound Repeller emits ultrasonic frequencies between 0-60 kHz to cause a mental disturbance in the monkeys. Motion sensor triggered audio sounds can deter the animals.

Mechanisms to affect their olfactory system by the use of water force, smell and light were also added. Systems can be used in remote farmlands and forested areas as well.

The Ultrasonic Sound Repeller emits frequencies between 0-60 kHz to cause a mental disturbance in the monkeys.

Motion sensor triggered audio sounds scare the monkeys away.

Mechanisms to affect their olfactory system by the use of water force, smell and light were also added.

The system passes a safe electric shock when a conducting material (human/animal) nears the loop by touching the fence and the ground simultaneously. The electricity passes through the animal, into the soil and to the ground rods (earthing rods) which are connected back to the energizer.

The main components of a solar fencing system are the power source (solar energy system) and the energizer.

The energiser can have further modifications such as a built-in alarm system to alert the farmers.

The fence energizer connected through a DC voltage regulator decides the amount of energy released per pulse and hence one has the choice to double the shock or more depending on the various situations.

The small panel has been mounted on the roof of the device. All electrical components have been internalised with the same device waterproofed to prevent breakage.

Correct placement of the light varies - the rule of thumb is to mount it on a wooden pole at a height similar to elephants and place it at entrance points (village and farms) and ensure that it is within the elephant’s field of visibility. Another is not required unless the field of visibility is blocked.

The Elephant repeller light is a simple passive lighting solution placed at the periphery of a village or field to repel elephants from a safe distance. It functions by emitting flashes of bright light at irregular intervals, which mimic the reflective iris of predators seen by elephants in the night.

As a country dominated by the agricultural sector, which employs about half the population, India has the largest irrigated area in the world. There are more than 26 million groundwater pumps that have improved agricultural productivity in the country. To ameliorate the current situation, portable solar pumping systems are most conducive in specific geographic areas where high water table and availability of surface water, but access to water for irrigation poses a challenge.

Addressing inefficiency in water and energy supply in rural India that hinders crop productivity and depletes groundwater.

Those farmers who rely on the grid-based power to run the pump sets suffer from lack of mobility at times of power outages or transformer outages. Those relying on diesel pumps experience fuel shortage.

Over 67% of India’s farmlands under marginal farmers have smaller landholdings (less than 1 hectare). High upfront investment to access the electric pumping systems or ever increasing rental in case of fossil fuel based pump sets make it unviable for them.

10. SNAKE REPELLER

11. MONKEY REPELLER

12. SOLAR FENCING

13. ELEPHANT REPELLER

SNAKE REPELLER - 400-1000 Hz

Energy System

Solar Module (Wp) 4

Battery (Ah) 800 mAh 1.2V

MONEY REPELLER - 0-60 kHz

Energy System

Solar Module (Wp) 40

Battery (Ah) 10 Ah 14.8V

ELEPHANT REPELLER

LED Specification

4 LED’s (1W & 3 W)

Battery 13Ah 3.7V

PORTABLE SOLAR WATER PUMPS

SOLAR MODULE (Wp) 40

Battery (Ah) 60Ah 12V

A portable solar pump in use at a shallow tank in Karnataka

As a country dominated by the agricultural sector, which employs about half the population, India has the largest irrigated area in the world. There are more than 26 million groundwater pumps that have improved agricultural productivity in the country. To ameliorate the current situation, portable solar pumping systems are most conducive in specific geographic areas where high water table and availability of surface water, but access to water for irrigation poses a challenge.

Addressing inefficiency in water and energy supply in rural India that hinders crop productivity and depletes groundwater.

Those farmers who rely on the grid-based power to run the pump sets suffer from lack of mobility at times of power outages or transformer outages. Those relying on diesel pumps experience fuel shortage.

Over 67% of India’s farmlands under marginal farmers have smaller landholdings (less than 1 hectare). High upfront investment to access the electric pumping systems or ever increasing rental in case of fossil fuel based pump sets make it unviable for them.

As a country dominated by the agricultural sector, which employs about half the population, India has the largest irrigated area in the world. There are more than 26 million groundwater pumps that have improved agricultural productivity in the country. To ameliorate the current situation, portable solar pumping systems are most conducive in specific geographic areas where high water table and availability of surface water, but access to water for irrigation poses a challenge.

Addressing inefficiency in water and energy supply in rural India that hinders crop productivity and depletes groundwater.

Those farmers who rely on the grid-based power to run the pump sets suffer from lack of mobility at times of power outages or transformer outages. Those relying on diesel pumps experience fuel shortage.

Over 67% of India’s farmlands under marginal farmers have smaller landholdings (less than 1 hectare). High upfront investment to access the electric pumping systems or ever increasing rental in case of fossil fuel based pump sets make it unviable for them.
The portable solar pump was designed to respond to the site context. The aim was to offer a modular and simplified operating mechanism, which will be durable and sustainable in the long run.

Portability Solutions

The following graph shows the discharge capacity of the pumps which are rated at 0.5 - 1 HP, and can pump the water in the range between 15,000 - 60,000 liters per day which is sufficient to irrigate between 2-3 acres of farmland. Availability of such a solution affords them flexibility to grow variety of crops ranging from food crops to commercial crops with assured irrigation. The proposed solution was found to have application in both surface and drip irrigation.

Large number of poor/marginal farmers across diverse agro-climatic regions hire diesel pumps for which considerable expenditure is incurred and when unavailable, it adversely impacts standing crops. The major advantage of having such a solution would be considerable savings.

Several farmers engage in farming activities in the early hours of the morning or late in the night when there is lack of natural lighting - for example Mogra (Jasmine) Cutters in Maharashtra and Rubber Tappers in Tamil Nadu. Many farmers use their phone lights or poor quality headlamps. However, the light quality is often insufficient, and the headlamps of poor quality are not meant for rough usage on the farm.

In order to maximize their catch in the night, small scale fishermen use loose LEDs that are attached to bamboo or wooden sticks, as a bait to attract and direct fish to specific areas in order to harvest them. These lights function in two ways: bringing the fish to the surface of the water as well as attracting insects which in turn attracts larger predatory fish. However, these lights are poorly made - low quality, lack of waterproofing meaning that the lights have to be replaced once every few months leading to cost addition in the long run. In addition, it cannot be submerged - limiting maximum effect. To overcome this, fishermen designed retrofitted the existing system on the boats which involved fitting it to a PVC tube on the side of the boat.

In Loktak lake, Manipur for lake fishing - The lights with higher luminosity attract insects to the surface of the water, which in turn attract more fish. The inbuilt lithium ion battery meant allows an easy attach/detach mechanism. A housing was built for the lights for them to be waterproof and durable.

In Colachel coast, Tamil Nadu for near coast fishing - Due to near coast fishing, the luminosity of the lights have to be very high. The battery back up also has to be on the higher side as the fishermen have to fish for 12 hours from evening to morning. The lights designed were retrofitted on the existing system on the boats which involved fitting it to a PVC tube on the side of the boat.
To ensure availability of good / healthy / and succulent (tender) shoots.

To ensure availability of large number of shoots (area for lac).

To provide rest to host trees for maintaining its potential.

To remove dead/ diseased and broken branches.

PROBLEMS ASSOCIATED WITH PRUNING

1. **Lac Pruner**

Automated Solution and Its Impact

Lac is a natural, biodegradable, non-toxic, odourless, tasteless, hard resin which is non-injurious to health. Lac is, in fact, a resinous protective secretion of a tiny insect, Kerria lacca (Kerr.). The lac insect is a pest on a number of plants both wild as well as cultivated.

India is a major producer of lac, accounting for more than 50% of the total world production (as of 2015-16). In the domestic market, lac was used for making bangles, toys and in the furniture industry. Overseas, lac is used mainly in the consumer goods industry. Today, an average of about 20,000 tons of stick lac (new lac) is produced in the country per year. Nearly 75% of this is expected to be exports. Most of the lac produced in India is from homestead land and wasteland. Usually host trees standing on rayyati lands are used for lac cultivation and in some areas, trees on Government land are taken on lease or rental basis.

Lac production is highly labour intensive process and provides employment to both men and women dwelling in forest and sub-forest areas. It is a highly remunerative crop, paying high economic returns to the farmers. (Source: https://iinrg.icar.gov.in/Lac%20Statistics.pdf)

Pruning at proper time is one of the important operations where the branches/ twigs are cut in order to get the maximum numbers of succulent shoots to facilitate feeding of the lac insects. It refers to the act of cutting/trimming the branches of the trees at a suitable period of time before inoculation.

PROBLEMS ASSOCIATED WITH PRUNING

- Most of the lac cultivators use traditional instruments like axes for pruning purpose and this often leads to breakage or splitting of branches leading to damage of trees.
- Pruning has to be done in a specified time period and if not done, will lead to loss.
- A significant amount is spent by the lac cultivators in engaging wage seekers who are paid INR 200 - 250 per day and with labour shortage in critical harvesting season, it can affect his/her livelihood.
- Pruning has to be done in a specified time period and if not done, will lead to loss.
- A significant amount is spent by the lac cultivators in engaging wage seekers who are paid INR 200 - 250 per day and with labour shortage in critical harvesting season, it can affect his/her livelihood.
- The process of pruning is laborious and at times hazardous as cultivators have to climb trees which are very tall at times, making the task very arduous. This is compounded by the fact that in majority of instances the task of pruning is undertaken by women.

INTERVENTION

- **Both Harvesting & Pruning**
- **Operational Expenditure**
 - **Wages/ Fee Charges for Climbing Tree**
 - **Before (INR)**: 1300
 - **After (INR)**: 760
 - **Net Savings (INR)**: 540
 - **Percentage Savings (INR)**: 41.53%

FISHERMAN LIGHTS

- **Energy System**
 - **Solar Module (Wp)**: 250
 - **Battery (Ah)**: 240
 - **Motor**: 165

LAC PRUNER

- **Energy System**
 - **Solar Module (Wp)**: 75
 - **Battery (Ah)**: 148
 - **Charge Controller**: 5A 12V

- **LED**
 - **Capacity (W)**: 10
 - **Backup Hours**: 12

To overcome the challenge, a solar powered battery operated pruner has been implemented. It is a long-handled pruner saw with a curved blade at the end and sometimes a clipper which is used to prune small trees.

- **Reduces operational cost**
 - There is a 41% reduction in the operational expenses, mainly wages paid to labourers which results in savings of INR 540. For e.g. taking an aggregate, a farmer with 60 lac trees can potentially save up to INR 16,800 annually. This being a cyclical process.

- **Reduces drudgery**
 - Due to the use of the pruner, the risks associated with climbing of trees that are 5-12 feet in height, is no longer present. Earlier, the lac cultivators used to climb the tree and use an axe for pruning or harvesting. This has also enabled both genders to be having an equal opportunity to perform the task.

- **More trees pruned in less time**
 - To a certain extent, the task can be performed in less time, thus resulting in more trees to be pruned. In the first cycle for harvesting, only half a tree could be harvested without the machine but post intervention, the farmer can complete harvesting one tree/day whereas, in the second cycle of pruning, he is able to prune 4 more trees per day.
18. SPRAYER

A sprayer is a device used to spray a liquid, commonly used as weed killers, crop performance materials and pest maintenance chemicals.

For agriculture, a sprayer is used to apply as herbicides, pesticides, and fertilizers on agricultural crops. Sprayers range in size from man-portable units (typically backpacks with spray guns) to trailed sprayers.

The spraying of insecticides on the trees, especially ber trees having a height of 5-6 feet, is a process that is done for preventing the infestation of the lac enccrustations by various pests. Spraying is carried out twice normally. Once one month after inoculation and the second time one month after the first spray.

The farmers have to keep various environmental factors in mind while spraying. If it rains just after the application of the pesticides, another cycle of spraying becomes necessary. Spraying is done by a small spray pump, while water-insecticide mixture is placed in a small drum. The operation is manual and time consuming since it requires continuous supply of water. It requires a minimum of 2 people to carry out the task.

20. Rubber Tapping

Rubber tapping is the process used to collect latex from a rubber tree. The latex is harvested by slicing a groove into the bark of a rubber tree at a depth of a quarter inch with a hooked knife and peeling back the bark.

It involves using a sharp edge blade to shave the bark of the rubber tree to extract the latex in order to produce rubber. The task can involve a lot of manual effort and drudgery. Considering the farmer aims to shave a large number of trees in a day.

TECHNICAL SOLUTION

The technology introduced was designed as a replacement for the manual shaving done using a knife. No training or special skills were required to use the technology.

Percentage increase in tapper’s income 20%

21. Paddy Thresher

Transplanting, weeding, harvesting and threshing are the five labour intensive operations in rice cultivation. Threshing is an integral part of post harvest activities for cereal and legume crops. In many developing countries, threshing is carried out manually by farmers that lead to low quality of paddy rice and grain loss. When the rice cropping area increases, consequently the manual threshing becomes arduous.

Threshing consumes 25% of the total energy utilized in paddy cultivation (Karthivel and Sivakumar, 2003). Some farmers use multipurpose threshers that chop the paddy chaff into small bits and render them unfit for cattle fodder. Also, farmers cannot sell the cut pieces of straw and lose out on additional revenue.

TECHNICAL SOLUTION

Due to the constraints in the chaff cutting machine, solar chaff cutter has been designed so that it helps fill the gap in the shortage of labour, reduce the drudgery of manually operated chaff cutter operations and also be a solution to power cut issues.

FISHERMAN LIGHTS

<table>
<thead>
<tr>
<th>Energy System</th>
<th>SOLAR MODULE (Wp)</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATTERY (Ah)</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>INVERTER</td>
<td>2kVA 24 V</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>CAPACITY (W)</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>BACKUP HOURS</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Traditional, the fodder is cut manually by the operator which becomes a physically demanding job as it requires energy and postural requirements of the labour and hence regarded as a source of drudgery (Kumaret al., 2004). A chaff cutter is a mechanical device for cutting this straw or hay into small pieces before being mixed together with other forage and fed to horses and cattle. This helps in animal digestion and prevents animals from rejecting any part of their food.

In addition to the above, there are farmers who also have electric powered chaff cutter but face erratic power supply which disrupts their work routines and delays the timely availability of fodder for the animals.

TECHNICAL SOLUTION

A very portable machine that can be transported easily to different terrains and difficult to access areas. It weighs 75 Kg and can be easily transported using a small transport vehicle. 2 to 3 people can thresh paddy simultaneously using this machine.

- Is cost-effective and more efficient
- Is twice as fast as manual threshing
- Reduces scattering losses & use of manual labour

<table>
<thead>
<tr>
<th>Paddy Thresher</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITY</td>
</tr>
<tr>
<td>WEIGHT</td>
</tr>
<tr>
<td>NUMBER OF PLANKS</td>
</tr>
<tr>
<td>SPIKE LENGTH</td>
</tr>
</tbody>
</table>

Increase in production compared to manual 135%
Agro-processing is now regarded as the sunrise sector of the Indian economy in view of its large potential for growth and likely socio-economic impact specifically on employment and income generation. The importance stems from the fact that India is one of the key food producers of the world and has access to several natural resources. Diverse agro-climatic conditions and wide-ranging raw material base adds to the huge advantage of a large untapped domestic customer base.

After production, the produce undergoes series of post-harvest unit operations, handling stages and storage before they reach to the consumers. One of the major hindrances faced is lack of appropriate farming technologies across the value chain specifically for small and marginal farmers, either severely lacking in terms of access or completely missing from value chain of products, services and systems available to farmers in India.

For small and marginal farmers growing diverse crops in accordance with agro-climatic conditions, to realise the value of their products some processing has to be done. Even with the advancement of technology in agro-processing technologies there are still wide-ranging tasks which are manually done like pounding which are laborious. At times they are incurring high transportation cost if produce is taken to mills.

Typologies of Technical Solutions

<table>
<thead>
<tr>
<th>Pulses</th>
<th>Millet</th>
<th>Cereals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crops</td>
<td>Pigeon Pea, Green Gram, Black Gram, Chana, Toor</td>
<td>Foxtail Millet, Pearl Millet, Raw Millet</td>
</tr>
<tr>
<td>Processes</td>
<td>Dehulling, De-husk, De-seed, De-husk, De-seed</td>
<td>Dehulling, De-husk</td>
</tr>
<tr>
<td>Output</td>
<td>50-300 kg/hr</td>
<td>50-300 kg/hr</td>
</tr>
<tr>
<td>Value Addition Post Processing (Pigeon Pea)</td>
<td>Increase in Sales Price: 50%</td>
<td>Increase in Sales Price: 75%</td>
</tr>
<tr>
<td>Value Addition Post Processing (Green Gram)</td>
<td>Increase in Sales Price: 84%</td>
<td>Increase in Sales Price: 91%</td>
</tr>
</tbody>
</table>

India produces more than 200 million tons of different food grains every year - 209.32 million tons in 2005-06. India produces all major grains - rice, wheat, maize, barley and 12 millets like jowar (great millet), bajra (pearl millet) and ragi (finger millet). The major segments within Grain Processing are Oil Milling and Pulse Milling & Flour Milling.

Optimised agri-processing solutions are clearly absent from the market which meets the needs of small and marginal farmers. To be economically viable the machines have to cater to a sizeable community of farmers.

- It is also seen that high market incidental costs are being incurred by farmers who are forced to take their produce to nearby mills for processing.
- High energy costs incurred by modern/traditional mills such as electrical charges are passed on to the users of the services.
- Marginal and small farmers are not able to allocate high capital and operational costs to agro-processing machinery - thus, resulting in emergence of middlemen and transfer of the actual value from the farmers.

<table>
<thead>
<tr>
<th>Commonly Available Machines</th>
<th>Power Consumption Between</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 HP - 20 HP</td>
<td></td>
</tr>
</tbody>
</table>

1. Ministry of Food Processing Industries, Annual Report 2007-08
3. India produces all major grains - rice, wheat, maize, barley and 12 millets like jowar (great millet), bajra (pearl millet) and ragi (finger millet). The major segments within Grain Processing are Oil Milling and Pulse Milling & Flour Milling.

A Solar Powered Rice Huller
Chilli: Chilli grinding has similar issues of drudgery, crop wastage due to not processing on time, high energy expenses incurred to process and loss in income due to selling unprocessed produce. With this solution, there is a considerable increase in the entrepreneur’s income and also having an energy backup would have a significant positive impact on people’s livelihood. The machine takes lesser time to grind chilli i.e. it takes 4 minutes and 30 seconds to make 1 kg chilli into a fine powder and thereby almost doubling the production in the given time. Installing a chilli grinding machine in remote village areas will reduce people’s traveling time and cost.

26. CHILLI GRINDING, 27. TURMERIC GRINDING

Turmeric: Markets are flooded with inefficient grinding machines forcing farmers to bear costs and losses. A market research and mapping was done to identify the most efficient pulverising machine, for the appropriate capacity. Following the research, the chilli grinding machine was retrofitted with new blades and a motor that made it suitable for turmeric processing. Current solutions offered in the market are in ranges from 3 HP and above, which are more suitable for commercial operations. But seen from an operational and business perspective of small and marginal farmers, it will be an over investment and under utilization of an asset. Smaller decentralized machinery are proven to be appropriate solutions for small scale and marginal farmers.

28. RICE HULLER & POLISHER

After identifying existing rice mill technologies within India, it was realized that the production capacity was too large and so was the energy requirement. A mini rice husher was designed from scratch to cater to marginal and small farmers in remote areas. The husher would be small enough to be used by a single farmer or used as a rental/community owned model to serve a small community of farmers. This gives scope for production of unpolished rice at domestic level as low cost, cottage scaled value addition business for farmers.

Output Efficiency: The rice husher improves the output efficiency to 95% from 80-85% of the locally available machine. Most of the products were in the power range of 3 - 20 HP and above - ie minimum 150 kg of rice hulled per hr. To make this feasible, the machine could now cater to at least 1 village consisting of 300 farmers to fill the existing gap for 30-60 farmers.

Reduction in Operational Costs: A separator was integrated to the husher to fully separate (100%) unpolished rice and husk. This reduced the labour employed to remove the husk, making the business increasing profitable. Also grading of the rice is usually not possible but this solution allowed for customization by combining the rice hulling technology with a semi polisher and a separator.

Reduction in Overheads and Incidental Costs: The portability of the machine helped reduce the market incidental costs incurred by farmers as transportation cost, in addition to the loss of wages. Also the DC Solar machine now reduced the energy costs incurred by modern/ traditional mills that includes electrical charges that are passed on to the users.
Milling is a crucial step in the post-production of rice. The basic objective of a rice milling system is to remove the husk and the bran layers, and produce an edible, white rice kernel that is sufficiently milled and free of impurities. Depending on the requirements of the customer, the rice should have a minimum number of broken kernels.

An ideal milling process will result in the following fractions: 20% husk, 8-12% bran depending on the milling degree and 68-72% milled rice or white rice depending on the variety. Total milled rice contains whole grains or head rice, and broken. The by-products in rice milling are rice husk and the bran layers, and produce an edible, white rice. After harvesting and drying, the paddy is subjected to the primary milling operation which includes de-husking as well as the removal of bran layers (polishing) before it is consumed. The rice obtained after this process is called raw rice.

RICE MILL

Energy System

- SOLAR MODULE (WP): 7500
- BATTERY (AH): 16000
- INVERTER: 6kW 10kVA 240V

Motor

- TYPE: AC induction Phase 1
- CAPACITY (W): 5 HP
- BACKUP HOURS: 3.5

RICE MILL SOLUTION

A solar micro cold storage was designed as a solution to store fresh fruits, vegetables, processed food and other perishable commodities. A small scale solar powered cold room enables both pre-cooling and storage of perishable - thereby helping preserve their freshness and maximising their shelf life.

The system is a solar standalone operation and consists of solar + DC/AC hybrid operation. The smart control system helps maintain the temperature, humidity and air-quality parameters precisely as per the product requirement. It consists of a battery-less compressor operation (small battery for auxiliary loads and control system) and a thermal backup due to the PCM plates (24-30 hours). It is a completely portable unit and has very minimal maintenance.

CASE STUDY

Markama Agri Producer Company Ltd

Markama Agri Producer Company Ltd, a Farmer Producer Organisation (FPO) set up in 2016 with an objective to provide an organised market to the farmers of Basistamurtika, Rayagada, Odisha now has 369 marginal farmers associated to them. They are involved in agro-business (agro based input - fertilizers and seasonal vegetables) with the support of Harsha Trust. Solar micro cold storage is a small scale solar powered cold room meant to store fresh fruits, vegetables, processed food and other perishable commodities. The unit enables both pre-cooling and storage of perishables to preserve their freshness and maximises shelf life. With the Cold Storage intervention, the FPO engaged in vegetable cultivation can now store extra leftover vegetables after sales. Since the installation, the FPO is efficiently storing chilli, cucumber, bitter guard and beans.

Lack of decentralized cold storage solution has been one of the major problems faced by farmers which has often resulted in a huge loss to farmers as it deprived them the opportunity to sell their produce as per the market demand and the power to negotiate the price. In general the wastage was 0.5 - 4% in food grains and 4-18% in different horticultural crops, the latter evidently being high value and more perishable. Though there are micro cold storage solutions available in the market their huge power requirement, lower efficiency and requirement for alternate backup power due to unreliable grid power in rural areas results in huge operational expenses making it economically not viable.

A reliable decentralized cold storage solution thus has been of great value in the post harvest management, enabling the farmers to reduce wastage of produce and significantly reducing the loss of income due to fluctuations of market demand.

30. COLD STORAGE

Cold Storage is a kind of a room, the temperature of which is kept very low with the help of machines and precision instruments. The present production level of fruits and vegetables is more than 100 million MT and keeping in view the growth rate of population and demand, the production of perishable commodities is increasing every year. Commercially apples, potatoes, oranges are stored on large scale in the cold storages. Other important costly raw materials like dry fruits, chemicals, essences and processed foods like fruit juices/juice concentrate daily products, frozen meat, fish and eggs are being stored in cold storages to regulate marketing channels of these products.

Cold storages are essential for extending the shelf life, period of marketing, avoiding glut, reducing transport bottlenecks during peak period of production and maintenance of quality of produce. The development of cold storage industry has therefore an important role to play in reducing the wastages of the perishable commodities and thus providing remunerative prices to the growers.

SOLUTION

Table: Cold Storage Specifications
CASE STUDY

Shivamamma & Shivamurthy
Agri Processing Entrepreneurs in a remote forested location

Nestled in the remote wilderness of MM Hills, Thuuliskere has always been disconnected from the main grid, and is known for Badopalampanna Tribes. One of the tribal communities scattered across the hilly ranges of southern Karnataka. Although the nearby stone quarry is where majority of the 500 odd families in the villages work, small scale agriculture continues to exist. Ragi being one of the primary crops. Having associated with the region for a while with different implementations, to facilitate the operations, Shivamamma and Shivamurthy, a couple from the village, as the operators and caretakers of the machine were selected by the NGO and the locals.

Catering to around 800 households in four nearby villages (Thulsikere, Indiganatha, Nagmale and Mandare), the machines are the first of their kind to be installed in the 8 km radius. So, the right location coupled with the enthusiastic couple.

who are taking care of the machines, the implementation has showed success. The number of Ragi and Jowar growers who are coming to get their product De-stoned and Milled into flour is steadily increasing. It used to take one woman labour an hour to de-stone 15kgs of Ragi whereas the 2.5 HP De-Stoner does 200kgs/hr. The 2 HP flour mill is also capable of milling 30kgs/hour. Since it is the only machine in the vicinity, the price of INR 7-10 for 5kgs presently charged can be increased in coming days.

The success of the implementation is a proof that the remoteness of the tribal community cannot be a barrier for the right technological and financial intervention.

CASE STUDY

Sagar Majhi
Rice Hulling Entrepreneur

Sagar Majhi is a small farmer who also owns a petty shop in the remote village of Sirmaksa, in the district of Kalahandi, Orissa. Rice being the main crop of the region, a good number of marginal farmers like Sagar own small rice field, and have a need to access the rice mills to hull the paddy into rice. Thanks to the earlier experiences with the communities in Kalahandi, the right entrepreneur was found in Sagar Majhi, and the implementation was done.

A 0.5 HP capacity huller was set up with a 1.5 KW solar module, and the systems were deployed at Sagar’s place. The implementation is in its initial assessment period, and the rise in income to be seen around INR 1000 per month during the first phase. The news about the machine is being spread across the village community, and although currently the farmers come to get the paddy de-husked are from Sirmaksa. Sagar believes, soon the farmers from nearby villages will also come to get the service. The initial assessment provided some valuable insights such as the farmers wanted the rice to be more polished than it is now, and also, since India is home to hundreds of types of rice varieties, the machines have to have subtle modifications in their settings to mill rice from different regions.

CASE STUDY

Patrappa Mahadevappa
Flour Milling Entrepreneur

Kariumannagar is a small rural establishment in Sivagiri Taluk, Karnataka. Main grid hasn’t reached the community yet, and even for basic services such as flour milling people have to travel at least 10 km. Considering the situation, and experience of working with the nearby communities for other livelihood solutions, the solar powered flour mill was conceptualized with the entrepreneur model. Patrappa Mahadevappa is an agriculturist with a small piece of land, and was interested in taking up the initiative of establishing a flour mill as he had been finding it hard to get his product milled at the right prices all these years, and knew there existed a demand for it. With a little space near the entrance of his house transforming into the mill, Patrappa was partnered up with the foundation to be the entrepreneur for the flour mill.

With a powerful 2HP motor powered by a good number of 3.5 KW solar module, and a 3 hour backup from 150Ahx8 batteries, the entrepreneur has had a good beginning to his enterprise. As the cashflow started to come in a good rate, the financing of INR 380,000 is being done in one of the partner banks in a nearby town. Currently, serving around 25 customers a day, Patrappa makes around INR 300 400 a day, and it is expected to increase as the news of a solar power mill running without any electricity is slowly spreading across the villages.

The mill is kept busy through flowing jowar, wheat and semolina among other raw materials during the day, and the customers spend a good few minutes with Patrappa in his place as they don’t have to travel 10km just get their product floured, but have the luxury of the facility in their vicinity. And for Patrappa, each new customer is a step closer towards achieving the goal of becoming an energy entrepreneur.

CASE STUDY

Sittilingi Organic Farmers Association

The Sittilingi Valley is located amidst the Kollavally and Sirben hill ranges in the district of Dharmapuri, Tamil Nadu. Home to mostly the Malavasi tribal community, the communities in the valley have been involved in rain-fed subsistence farming for a very long time. In recent years, understanding the benefits of practicing the organic way of agriculture, they established Sittilingi Organic Farmers Association to promote not just organic farming but also to encourage the farmers to deliver value added products from the millets, dal and other major products they grow. Considering the remoteness and the irregularity in the main grid power, the FPO needed a reliable set of machines to process their cultivated products.

Understanding the need in detail, a holistic technological solution was conceptualized where their agricultural processing is supported by solar powered flour mill, dal mill, grade/de-stoner, dough mixer, weighing & packing machine.

As the solution involved multiple machines, an innovative technological design was made where a solar module of 4.5 KWp was installed to support 6 machines with capacities ranging from 0.5 – 2 HP with the machines up to 4 HP which can be run in combination. Giving a backup of up to 5 hours, today, the whole processing mechanism has become very efficient. The FPO is paying an EMI of INR 4000 which is the expense they had for the cost incurred to procuring diesel. Before the solution the farmers used to travel 60 kms to fetch diesel for the generators, and often taking up to an entire day, halting production.

This way, Sittilingi Organic Farmers Association will be able to own the asset of the solar system in a couple of years. This is a very significant example on how FPOs in remote locations could be greatly benefitted in every step of the value chain through clean energy access.
Animal Husbandry
India is the largest producer of milk where more than 70 million rural households are engaged in milk production. The majority of these farmers are small and marginal. The domestic poultry industry is the fastest growing segment with a compound growth rate of 18%. According to the latest report by IMARC Group, the dairy market in India reached a value of INR 7,916 billion in 2017 and accounts for 18.5% of total world’s production.

With continual efforts from the cooperative and private sector, along with prudent policy intervention by the government, India has been transformed from having scarce production of dairy and poultry to being among the largest producing nations in the world.

Poultry makes a substantial contribution to household food security along with supplementing incomes worldwide (Jensen, H.A. and Dolberg, F. (2001). India is the fifth largest egg producer and eighteenth largest producer of broiler (Mehta R., 2002). At present much of the transformation has been made from backyard poultry to commercial poultry farming. However, a significant rural population continues to practise backyard poultry as a supplementary source of income. This economic activity is also collectively taken up by the community often breeding indigenous varieties which fetch higher prices.

In rural areas where poultry is predominantly taken up as a livelihood, the villages are electrified but the quality of power remains poor. The voltage fluctuates frequently and power outages are common. Depending on the power quality and availability, as well as the capacity of the incubators, different technical solutions were identified. For completely off-grid scenarios, DC powered 100-egg incubator with power consumption of 165W was found to be viable. In other scenarios, where power is available but unreliable, an inverter-based hybrid system with power consumptions of 250W for both 100-egg incubator.

The incubation process is very sensitive as the temperature has to be maintained for 21 days during the whole incubation period. Any change in temperature, even for a short period destroys the 21 day cycle.

- Unreliable and poor quality of power supply in rural areas compromise the efficiency of incubation system leading to loss of eggs, and income.
- Certain indigenous breeds like the Indian Breed of Black Chickens, do not sit long enough on its eggs for hatching—pointing to a need for an incubator.

Table: Egg Incubator

<table>
<thead>
<tr>
<th>EGG INCUBATOR (500 EGGS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR MODULE (Wp)</td>
</tr>
<tr>
<td>BATTERY (Ah)</td>
</tr>
<tr>
<td>INVERTER</td>
</tr>
<tr>
<td>CAPACITY (W)</td>
</tr>
<tr>
<td>BACKUP HOURS</td>
</tr>
</tbody>
</table>

- **Income increase per batch of eggs incubated**: 5x
India’s dairy industry has grown considerably ever since the White Revolution, making it the world’s largest milk producer accounting for 17% of world’s total milk production. It is estimated that around 20% of milk procurement is through cooperatives, about 15 million milk producers in India are members of about 150,000 village dairy cooperatives. As milk is a highly perishable item, any weakness in the upstream supply chain may result in milk spoilage before reaching the processing plants.

There is a lack of efficient milk procurement system and a need to upgrade the critical infrastructure such as installation of electronic milk testing equipment, weighing equipment etc.

Since a large number of milk procurement centres are located in the interior rural parts of the country, they also face erratic power supply absence, causing delay in procuring the milk resulting at times in quality of milk getting deteriorated and thus resulting in income loss.

Savings through power bills due to reduced dependence on grid power - thus resulting in substantial savings in operational costs - and boosts the income of the members.

Helps the cooperatives in ensuring accuracy in measuring quantity and fat content of milk and in making fair payments to the farmers.

Indirectly helping in reducing the quality variations among the sellers.

In the process, also reducing the carbon footprint substantially with the shift from using fossil fuels to generate power.

Labour Intensive Process

In the manual milking process, extra labour is hired increasing cost and reducing substantial savings. The farmer’s time is solely occupied for farm management, leaving very less time for engaging in other production processes.

Low Productivity

A cow can not be milked more than twice a day manually, thereby decreasing the quantity of milk produced and thus earning very less income.

| Difference in time taking to milk a cow manually and mechanically | 60% |

Drudgery

There is increased drudgery involved in manual milking process when it’s done in a large scale as the entire process needs to be monitored individually.

1. **Single Cluster**: Suitable for farmers having a herd of less than 15 milking animals.

2. **Double Cluster**: The motorized double cluster milking machine is suitable for farmers having herd of 15 to 30 milking animals.

The machines are mounted on a stainless steel trolley having polymer wheels. The trolley can be dragged easily within the cow shed.

Technical Solutions

The intervention has helped ensure reliable power through the solar based solution - so that equipment can be now run with minimal down time mainly during the peak procurement times.

- Savings through power bills due to reduced dependence on grid power - thus resulting in substantial savings in operational costs - and boosting the income of the members.

- Helps the cooperatives in ensuring accuracy in measuring quantity and fat content of milk and in making fair payments to the farmers. Indirectly helping in reducing the quality variations among the sellers.

- In the process, also reducing the carbon footprint substantially with the shift from using fossil fuels to generate power.

MILKING MACHINE

<table>
<thead>
<tr>
<th>Energy System</th>
<th>SOLAR MODULE (Wp)</th>
<th>BATTERY (Ah)</th>
<th>CHARGE CONTROLLER</th>
<th>CAPACITY</th>
<th>BACKUP HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Cluster with 5W LED light (For 5 Cows)</td>
<td>75</td>
<td>960</td>
<td>20A 12V</td>
<td>120 W</td>
<td>2</td>
</tr>
<tr>
<td>Double Cluster with 10W LED light (For 10 Cows)</td>
<td>120</td>
<td>1440</td>
<td>20A 24V</td>
<td>180 W</td>
<td>2</td>
</tr>
<tr>
<td>Single Cluster with 15W LED light (For 15 Cows)</td>
<td>150</td>
<td>1800</td>
<td>20A 24V</td>
<td>180 W</td>
<td>2</td>
</tr>
<tr>
<td>Single Cluster with 30W LED light (For 20 Cows)</td>
<td>300</td>
<td>3600</td>
<td>20A 24V</td>
<td>180 W</td>
<td>2</td>
</tr>
</tbody>
</table>

Solar Powered Milking Machine in use at a dairy farm in Karnataka

43
CASE STUDY

Karnataka Cooperative Milk Producers' Federation Limited (KMF)

Karnataka Cooperative Milk Producers' Federation Limited (KMF) is the Apex Body for the dairy co-operative movement in Karnataka. It is the second largest dairy co-operative amongst all dairy cooperatives in the country. KMF has 14 Milk Unions covering all the districts of the State, which procures milk from Primary Dairy Cooperative Societies (DCS) and distributes it to the consumers in various 100 egg incubator markets in Karnataka. Through their 1421 functioning dairy cooperatives, having a membership of 24.97 lakhs procuring annually 75.87 lakh litres, the breadth and scale of operations is gigantic in nature.

KMF has taken lead in empowering women through a federally funded programme called Support to Training and Employment Programme (STEP), as one of the measures to ensure wellbeing of women in the traditional informal sector. KMF seizing the initiative today has 2199 STEP units functioning led by women. As part of the larger initiatives towards upgrading and strengthening milk procurement infrastructure, specially STEP units were targeted. Given these centres being run by women, they are widely dispersed and majority of them are located in rural areas. Smooth functioning of these centres became a challenge in absence of basic equipments like portable Milk testing equipment, weighing scales - compounding to an absence of reliable power undermining efficient functioning.

KMF was keen to address the above stated issues, and in the process approached SELCO Solar Light Pvt Ltd for a solution. Following the procurement procedures, competitive bidding and after due evaluation, the project was awarded to SELCO Solar Light Pvt Ltd for execution. The key highlights of the project are:

- 522 units led by women were energized by solar power – thus resulting is savings of INR 5-7 thousand per system, cumulatively saving INR 31 crores.
- Lowering the operational costs of the centres, thus resulting in higher savings and boosting income for members in terms of more dividend earnings for members.
- Helped the cooperatives in ensuring accuracy in measuring quantity and fat content of milk and in making fair payments to the farmers.
- Indirectly helping in reducing the quality variations among the sellers.

CASE STUDY

Vittal Jagtap

Dairy Farmer

Mr. Vittal Jagtap from Gadegaon village of Solapur district, Maharashtra is one of the more entrepreneurial shopkeepers of the village. He owns a saloon at the village market which is his primary business and source of income. Mr. Jagtap also does dairy farming for a secondary income and owns 6 cows, which on an average give 12-15 liters of milk every day. Due to his primary business, he was unable to give time to the milking process.

After investing in the milking machine, Mr. Jagtap is able to invest more time in his saloon shop while earning more money compared to manually milking the cows. He can save up to 2 hours a day which would otherwise be engaged in milking and allied activities. If Mr. Jagtap engaged a hired labourer in the task he would have to shell out approximately 300 INR per day for the service provided. Now his dairy farm is primarily handled by his wife and milking has become much easier for her as she can handle the milking process and the cows by herself. With the addition of the milking machine technology now, Mr. Jagtap plans to invest in additional cows and thereby increase his total earnings. The machine has also reduced their physical drudgery and as milking machine is considered to be safe and hygienic compared to hand milking it would also avoid any health issues associated with the hand milking method.

CASE STUDY

Ranapur

Egg Incubator for Women’s Collective

Ranapur is a Block in Jhabua district in Madhya Pradesh, India. The land in Ranapur is shallow hilly terrain (Dungarwala Jameen) and dry. Practicing rain fed, single cropping cycle 80% of the population migrates to nearby cities and states for daily wage jobs. Apart from agriculture, any alternate source of income in the area was nearly absent.

Ranapur block is one of the original places of ‘Kadaknath Chickens’ - an Indian breed of black chicken whose meat is popular for its high protein content, also fetching a price 3-4 times higher than a broiler chicken. Every family keeps a small poultry in their backyard. Due to the meat’s alleged medicinal properties the meat is also in high demand. The chicken sells per piece (instead of weight) in the local market. One Kadaknath chicken depending on its size will sell at Rs. 700 - 1000. Women raising 5-10 chicks as a family business and source of income.

An intervention with multiple women SHGs (Self Help Groups) and JLGs (Joint liability group) and develop an income generating business of egg incubation. A 100 egg incubator was installed, shared by 10 members of the SHG. Women as a group would operate and maintain the incubator. The project was designed such that they would buy Kadaknath eggs, hatch them and sell their chicks in the market. The local monitoring and hand-holding was provided by the NGO.
Food Processing
THE INDIAN FOOD PROCESSING INDUSTRY ACCOUNTS FOR 32% OF THE COUNTRY'S TOTAL FOOD MARKET, ONE OF THE LARGEST INDUSTRIES IN INDIA AND IS RANKED FIFTH IN TERMS OF PRODUCTION, CONSUMPTION, EXPORT AND EXPECTED GROWTH.

This industry provides a linkage between the two pillars of our economy - manufacturing and agriculture - and hence is undergoing constant transformations. It also has a high concentration of the unorganised sector, representing almost 75% across all product categories.

Thus, there exists inefficiencies in the existing production system, which explains the disability of small rural entrepreneurs to invest in technology upgradation and product diversification.

LOW PRODUCTIVITY, HIGH DRUDGERY

Most of the vendors in rural and urban areas are engaged in long hours of manual work, leading to high drudgery and even higher demand for labour for lesser productivity and poor efficiency.

LACK OF ACCESS

There are various mechanised options available in the market but they remain inaccessible to majority of the small entrepreneurs. They further get deprived due to lack of access to the various market linkages that restrict them from venturing into different geographies, thus affecting their income.

UNRELIABLE POWER

Production is affected due to lack of grid connectivity, which may be available but may not be functioning for long hours. Many resort to using diesel generators, which result in high recurring operational costs. There is a need for decentralized clean energy based solutions and thereby improve their access to it in terms of both technology and finance.

A common home based livelihood, women usually utilize their existing kitchens as the production units-making different kinds of rotis and selling them in local restaurants, canteens, or in some cases packing and selling them in nearby cities. The entire workflow, from kneading the dough, rolling the rotis, to cooking the rotis and then storing them, is done within the same workspace. But their business is often limited by their physical capacity-entrepreneur's often complain of body pain and not being able to meet the market.

Additionally, restaurants and canteens spend enormous time and labour in making large numbers of rotis-hampering productivity.

The solar powered DC roti rolling machine increases the output multifold in such scenarios, and increases business opportunities, leading to increase in income.

FOOD PROCESSING

"Roti" is a flat round bread cooked fresh on a griddle and usually is an important part of most Indian meals.

The roti making entrepreneurs engage in making different types of bread as part of their business strategy, availability of raw materials and market demand. They earn their maximum income from jowar roti and bajra roti. These rotis are mostly sold at marriages, community functions, hotels, dhabas, khanawalls, catering and retail shops.

Among them, the soft rotis are used for an everyday consumption whereas kadak rotis are packaged for travelling purposes with a shelf life of a month. Chapatis are only made on the basis of orders as they have a shorter shelf life of 3 days. Similarly, Shangi Holige (Sweet Peanut Bread) can be eaten within 3 days. For an additional income to their business, a few entrepreneurs may also engage in making papad for selling it at local hotels.

The various kind of rotis, both in the form of freshly prepared and dried variety are consumed in great quantities not just in the households of various regions but also in small restaurants (Khanavalis), shops, family events, gatherings and public events.

A common home based livelihood, women usually utilize their existing kitchens as the production units-making different kinds of rotis and selling them in local restaurants, canteens, or in some cases packing and selling them in nearby cities. The entire workflow, from kneading the dough, rolling the rotis, to cooking the rotis and then storing them, is done within the same workspace. But their business is often limited by their physical capacity-entrepreneur's often complain of body pain and not being able to meet the market.

Additionally, restaurants and canteens spend enormous time and labour in making large numbers of rotis-hampering productivity.

The solar powered DC roti rolling machine increases the output multifold in such scenarios, and increases business opportunities, leading to increase in income.

LOW PRODUCTIVITY, HIGH DRUDGERY

Most of the vendors in rural and urban areas are engaged in long hours of manual work, leading to high drudgery and even higher demand for labour for lesser productivity and poor efficiency.

LACK OF ACCESS

There are various mechanised options available in the market but they remain inaccessible to majority of the small entrepreneurs. They further get deprived due to lack of access to the various market linkages that restrict them from venturing into different geographies, thus affecting their income.

UNRELIABLE POWER

Production is affected due to lack of grid connectivity, which may be available but may not be functioning for long hours. Many resort to using diesel generators, which result in high recurring operational costs. There is a need for decentralized clean energy based solutions and thereby improve their access to it in terms of both technology and finance.

A common home based livelihood, women usually utilize their existing kitchens as the production units-making different kinds of rotis and selling them in local restaurants, canteens, or in some cases packing and selling them in nearby cities. The entire workflow, from kneading the dough, rolling the rotis, to cooking the rotis and then storing them, is done within the same workspace. But their business is often limited by their physical capacity-entrepreneur's often complain of body pain and not being able to meet the market.

Additionally, restaurants and canteens spend enormous time and labour in making large numbers of rotis-hampering productivity.

The solar powered DC roti rolling machine increases the output multifold in such scenarios, and increases business opportunities, leading to increase in income.
POWER CUTS
Most of the regions where roti rolling is prevalent are prone to power-cuts. Thus, even if the entrepreneurs make the shift to a mechanised roti rolling machine, the entrepreneurs face frequent power cuts & energy issues, during peak production hours which directly impact the growth potential of their business.

LABORIOUS PROCESS
Small bundles of dough are rolled into a ball shape size and then rolled out often using a rolling pin. This process takes a long time and requires a lot of continual endurance when done manually to keep flattening the pre-prepared balls making it a highly laborious task. Post intervention, the entrepreneurs are able to increase their productivity by 10 times- moving from 50-100 rotis per day, to 500-1000 rotis a day (depending on the time available to the entrepreneur and the market linkage present) with less effort and labour needed in the process.

Avg. manual production per day 50-100 Rotis

TECHNICAL SOLUTION
<table>
<thead>
<tr>
<th>Energy System</th>
<th>Single Cluster with 5W LED light (For 5 Cows)</th>
<th>Single Cluster with 10W LED light (For 10 Cows)</th>
<th>Double Cluster with 10W LED light (For 15 Cows)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Module (Wp)</td>
<td>80</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Battery (Ah)</td>
<td>1440</td>
<td>1920</td>
<td>2400</td>
</tr>
<tr>
<td>Charge Controller</td>
<td>10A 24V - Hybrid</td>
<td>10A 24V - Hybrid</td>
<td>10A 24V - Hybrid</td>
</tr>
<tr>
<td>PMDC Motor</td>
<td>150 W</td>
<td>150 W</td>
<td>150 W</td>
</tr>
</tbody>
</table>

PMDC motor drives the roti rolling machine and is powered by an optimally designed solar power system and comes in two different configurations with respective roti output capacities. The RPM of the rolling plate has been designed as per the needs of the user by using a simple small flywheel. This slowed the rotation and reduced the chance of the motor failing. The roller mechanism was also redesigned for more hygienic and better quality roti rolling.

The rolling pin and spring pressure adjuster allowed for even spread of the dough in concordance with the spin direction of the plate where the two halves of the rolling pin spin in opposite directions- ensuring quality control.

OWNERSHIP MODELS

HOME BASED ENTREPRENEURS (Individual ownership)
- Conquer Smaller shops, temples, rural and urban hotels
- Avg. Profit Per Month: INR 12,000-15,000 (INR 4 per roti)
- Labour: Family members support in preparation, market linkage and delivery
- Financial Model: Selling 100 rotis a day at an average, and with existing financial products- 20% of the profit per month, would pay back the loan in 2 years

ENTERPRISE MODEL (Employing multiple members with clear task division)
- Consumer: Smaller shops, canteen, temple, weddings, restaurants
- Income (AVG): INR 30,000 (INR 4 per roti)
- Labour: The Self Help Group (SHG) and shared ownership model for the enterprise results in profit being shared between its different members equally. The tasks in the enterprise are divided, and no extra labour costs are incurred.
- Financial Model: Selling 400 rotis a day at an average, and with existing financial products- 10% of the profit per month, would pay back the loan in 1 year

CANTEEN, RESTAURANTS
- Consumer: Students, families, neighbours, local community
- Income (AVG): INR 40,000 - 50,000 (INR 10 per roti)
- Labour: Women and young boys from the local community are employed to handle various tasks related to meal preparation, cooking and cleaning
- Financial Model: Selling 400 rotis a day at an average, and with existing financial products- 5% of the profit per month would pay back the loan in 1 year

MARKET LINKAGE MODELS

Selling rotis at nearby hotels, dhabas, marriages functions, khanavalis and retail shops
Using local transportation services like buses for delivering rotis to different markets and towns / cities
Word of mouth generates business at a smaller level while at a larger scale, ads in newspapers, banners and distribution of business cards helps get bigger orders.

The use of social media like whatsapp and facebook are also being ventured into to spread the word about the same.
Financial products have been developed with different financial institutions by studying the cashflow of roti rolling entrepreneurs and the role of sustainable energy and the intervention in the same. For this solution, it was found imperative that the solution is designed to significantly improve net profit first, and the loan product designed in a manner that a part of the profit increase is channelled to an EMI (refer to graph). Keeping in mind the continuous raw material investment in the business, some financial institutions also designed a weekly collection mechanism to ensure financial discipline.

FINANCIAL SOLUTION

<table>
<thead>
<tr>
<th>EMI AMOUNT (As per cash flow)</th>
<th>INR 2353</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAN TENURE</td>
<td>24 Months</td>
</tr>
<tr>
<td>INTEREST RATE (REDUCING)</td>
<td>12%</td>
</tr>
<tr>
<td>DOWN PAYMENT</td>
<td>20% of Total Cost</td>
</tr>
</tbody>
</table>

Note: This specific financial product has been availed by over 70% of the total roti rolling entrepreneurs worked with, and is viable for even a small home based entrepreneur purchasing one roti rolling machine.

IMPACTS

REDUCTION IN DRUDGERY AND INCREASED PRODUCTIVITY
The solar roti rolling machines have enabled entrepreneurs, partnerships and self help groups to increase their productivity from 50-200 rotis a day to 500-1000 rotis a day. It takes about 15 seconds for each roti to be made, depending on the entrepreneurs experience.

IMPROVEMENT IN INCOME
In most cases roti rolling entrepreneurs or self help groups have mentioned a seasonal spike in income which has tripled or quadrupled their income levels. Atleast 70% of the entrepreneurs have been able to diversify their business through the machine. Post installation of the intervention, these entrepreneurs were on average able to increase their daily production 2X (from 200 to 400 rotis) resulting in additional income in hand.

EMPLOYMENT CREATION AND MARKET INNOVATION
The increased market demand have made women entrepreneurs to spread awareness among other women in their communities and also employ them as additional labour.

CASE STUDY

Anusuya
Roti Rolling Entrepreneur

Anusuya and her husband migrated to Khoppala town for better education for their three children. Her husband worked as a security guard. Being burdened with expenses, Anusuya wanted to contribute to the household income, but was looking for livelihood options that she could do from home. Hearing about the roti rolling entrepreneurship option, there was an initial apprehension as starting a business was a new concept to the family.

A planned structure of the functioning and the financials were introduced: estimating cost of procurement of raw materials, market price and income thereof. Starting small with just 50 rotis, and through the support of a loan from a private sector bank. Anusuya slowly increased production to 100, 150 and 700-800 rotis per day - earning a net income which is 3 to 4 times what her husband earned through his job as a security guard.

Anusuya expanded further when newspaper articles started publishing stories on her success. Today, she and her husband take orders for 5,000-10,000 rotis.

CASE STUDY

BASAMMA HUCHUNNUR
Roti Roling Entrepreneur at a Khanavali (Eatery)

Most of the labour in Ilkal, a medium-sized town in Bagalkot district, in Karnataka, have primarily engaged in the granite business since the past 10 years. They used to travel 5 kms or more for just having their lunch. Basammya and her husband spotted a market demand for food and hence decided to open a khanavali 10 years back for these labourers. The process of preparing rotis manually turned out to be very tiresome with even lesser productivity.

In the recent years, due to increasing migration rate, labour had become many a times, unavailable. Initially, they used to produce 350-300 rotis but it had come down to hardly 150-200 rotis. To make things worse, health issues and ageing affected their business as well. Solar powered roti rolling machine intervention promised to help increase their productivity, thereby not just satisfying the demand but also expanding to other market spaces. With one extra labour alone, they were able to make 300-350 rotis a day and produce further more if demand increased. Now every month they are able to earn an income of INR 24,000 from the roti sales alone. A loan of INR 50,000 was made available from a local financial institute at the interest rate of 16.75% for a 1 year loan term. A small percentage (approximately 20%) of their total income was collected weekly. In such a market space, energy access and technology did not just increase their income but also helped reduce their strain and health issues.

CASE STUDY

HUCHUNNUR BASAMMA
Roti Roling Entrepreneur at a Khanavali (Eatery)

They have hired labour so each women makes 100 rotis per day, so if a group of 3-4 women do it together, thus creating employment in their community. Being in a small town, Anusuya has not let the market limitations affect her business. She has a tie up with the bus drivers who commute to nearby cities on an everyday basis, and deliver the rotis made by her growing enterprise. Packing bundles of 200-250 rotis, the drivers charge a small amount to deliver and it works as additional income for them. Their story is an example of improving not just their living but also of their community as a whole.
36. Flour mixing
37. Pani puri

Snacks
According to FAO, due to its low cost and convenience, 2.5 billion people consume street food, among which a popular one is pani puri. Like other informal sector enterprises, street food enterprises are characterized by the small scale of the operation, use of traditional food processing technologies, and low capital costs that allow ease of entry into the sector.

‘Pani puri’ (unleavened Indian bread that is fried, is crisp and which is filled with tamarind, chilli, potato, onion and chickpeas) is very popular among all age groups and is sold in every nook and corner of the country.

38. Sweet Meat Making

India is the largest milk producing nation in the world. Milk is perishable in nature; thus it cannot be stored for a very long period. In order to preserve it, more than half of milk produced in India is converted into a variety of traditional value-added milk products which play a significant role in the Indian economy.

Khowa is a heat desiccated indigenous milk product. Due to its large scale consumption, close to 600,000 tonnes of khowa is being produced annually, which is equivalent to 7% of India’s total milk production.

Entrepreneurs are not able to cater to their potential market. Their productivity is hampered due to the laborious tasks involved.

LONG PROCESS TIME
Entrepreneurs are not able to cater to their potential market. Their productivity is hampered due to the laborious tasks involved.

POWER CUT
Most of the vendors belong to areas that face irregular power cuts which often lead to disruption in their work or leads to further lack in confidence to move to a mechanised process. This also leads to excessive wastage of ingredients, low productivity and low incomes.

LABOR INTENSIVE WORK
Khowa makers would usually work with 50 ltrs of milk per day, manufacturing 20 kg of khowa, which is then sold to nearby sweet shops once a week. The whole process takes a minimum of 3 hrs if done manually, and requires constant stirring attention using a ladle which is a drudgery packed task.

Power Cuts
If using a machine, frequent power cuts affect the users income for the day and lead to wastage of time. There are also high chances of spoilage in case of power outages leading to economic loss.

TECHNICAL SOLUTION
As many end users want to boost their productivity to appeal to a larger market as well as increase their efficiency, the solution has been to supply solar powered flour mixing machines which is used to make pani puri (usually larger capacity 1 HP) and bakery products (smaller capacity of 0.5 HP). There is now a productivity increase due to automation, better distribution of work in the households and increased efficiency due to the all-round decentralized and clean energy based power supply.

FLOUR KNEADER AND PURI CUTTER

<table>
<thead>
<tr>
<th>Energy System</th>
<th>SOLAR MODULE (Wp)</th>
<th>BATTERY (Ah)</th>
<th>SPCU</th>
<th>Motor</th>
<th>TYPE</th>
<th>CAPACITY</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR MODULE</td>
<td>2400</td>
<td>14400</td>
<td>4 KW 5 KVA 96V</td>
<td>AC Induction 1 phase</td>
<td>1 HP + 1 HP</td>
<td>1600</td>
<td></td>
</tr>
</tbody>
</table>

Avg. Increase in production amounts and income 100%

Utilization of a single hour of a mechanized khowa making machine can lead to an average of 35 kgs, (15kgs more than manual production) which equates to an additional 45kgs across 3 hours.

SWEET MEAT (KHOWA) MAKING

<table>
<thead>
<tr>
<th>Energy System</th>
<th>SOLAR MODULE (Wp)</th>
<th>BATTERY (Ah)</th>
<th>SPCU</th>
<th>Motor</th>
<th>TYPE</th>
<th>CAPACITY</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR MODULE</td>
<td>1200</td>
<td>7200</td>
<td>3 KW 4 KVA 48 V</td>
<td>AC Induction 1 phase</td>
<td>1 HP</td>
<td>1600</td>
<td></td>
</tr>
</tbody>
</table>

Avg. Increase in productivity >400%
39. Popcorn Making

Packaged popcorn is a very popular snack and is instant and convenient to prepare. It is prepared by heating the corn kernels in a kettle, pot, or stove-top by adding vegetable oil or butter. The popcorn machine needs two-power sources, gas for heating purposes and power supply for the automatic rotation function.

There are two types of popcorn vendors - indoor who sell the packaged popcorn in market and the other are street vendors who travel within their villages and neighbourhoods selling fresh popcorn.

LACK OF MOVEMENT AND EXPANSION IN BUSINESS

The push cart restricted the users movement to travel to other villages and towns so they used to cook at home and make packaged popcorn for selling at different markets. There was market demand that the user could envision but not enough resources to supply.

The need for mobility was very crucial for expanding the business - and a gap that needed decentralized & portable ways of generating clean & affordable energy.

TECHNICAL SOLUTION

A pick up vehicle housing the popcorn machinery was solarised to cut down the operating costs and easy charging of the battery for the motor as well as lighting purposes. Entrepreneurs are also now in the position to cover various markets while selling fresh popcorn as opposed to packaged as was previously done. A distance of about 150 kms could be now covered within 4 days, which was mostly in the urban market space.

Addition of lighting solution ensured that the vendors were able to further maximise their profits by working late in the evenings - a time where the markets are busier.

Percentage increase in productivity due to energy access solution +100%

40. Oil Mill

India is one of the largest producers of oilseeds in the world and has a wide range of oilseeds crops grown in different agro-climatic zones. India’s share in the world oilseed production is about 8%. The estimated demand for vegetable oil is over 18mt (million metric tonnes) which is predominantly met by imports.

MARKET AWARENESS AND LINKAGES

Oil used most commonly is hot pressed, as it is cheap and easily available. The hot press oil applies external temperature and requires pre-conditioning of the input material. Due to the chemicals used in the oil extraction process, high quantity of oil is extracted which kills the required micro-nutrients. Even though the oil extracted from hot press and chemical extraction is not good for health, it is still consumed as it is cost effective and the manufacturer gets benefitted as they can extract more oil from these methods.

LACK OF SMALL MACHINES

For small farmers who have the ability to engage in the oil extracting process, are unable to do so due to the unavailability and lack of awareness of the small machines. This holds them back from venturing into oil extraction business even when they may have the resources and raw materials for it.

Implementation location of cold press oil mill sites are located close to oil seed growing areas, close to farms. The efficiency of this machine is far greater than hot press oil. At the current motor capacity, the machine has an output of 5-70 litres of oil a day.

Power consumption of cold press oil machine 2 HP

41. Sugarcane Juicer

Many of the sugarcane juice machines are installed roadside in a cart structure (2.6 X 4.08 feet) and is powered by electricity. AC motors generally used in sugarcane juice machine is of 1.5 HP (single phase) and is controlled by a rotary switch which provides functions like forward and reverse rotation of motor.

The machine has 4 drum structures out of which 2 drums are used for soft crushing and 2 for hard crush. The machine is capable of crushing only one sugarcane at a time.
42. Sweet Lime Juicer

LACK OF ACCESS TO GRID CONNECTION

There are a number of motorized juicers available in the market which run on alternating current, but these solutions are accessible to only those kind of vendors who have a grid connection. But there are also many roadside juice vendors who don’t have grid connections and are unable to meet their energy needs in their daily life. Such juice vendors are either permanent or mobile.

INCREASED DRUDGERY AND LOW PRODUCTIVITY

The juice vendors who sell juice over a push cart near the roadside currently use the manual Mosambi juicer, which has a lot of drudgery and very less productivity. They are able to only make a minimum of 40–50 glasses and a maximum of 80–100 glasses of Mosambi juice per day by manual machine methods.

TECHNICAL SOLUTION

- A solar based motorized system designed to extract juice from the fruit. The system can be retrofitted with existing hand operated Mosambi juicer machine and the solution can be provided to new entrepreneurs as well.

HIGH LABOUR INTENSIVE OPERATION

The processing of puffed rice from paddy traditionally takes about 6 days. Some of the tasks, particularly manual roasting of paddy and immersing it in water, mixing the ingredients with milled rice and stirring the rice in roaster pan for uniform heating are highly labour intensive operations.

LACK OF EFFICIENT MECHANISATION

Complete mechanization of the process has not yet been undertaken which leads to many problems. Many of the rice puffing units are of the traditional type and are inefficient. Also, modern rice puffing machines have higher capacity and hence produce higher energy bills. Power outages also leads to loss of production and efficiency.

TECHNICAL SOLUTION

- Oversized 1 HP motor was replaced with an efficient 0.25 HP DC motor along with a speed controller that has been solar powered with the backup of 3 hours.
- Diesel generators used by the entrepreneurs were now fully replaced by the solar solution. Also the motor with its increased efficiency gives the users the same output but at a lesser electricity cost.

43. Puffed Rice

TECHNICAL SOLUTION

- A solar based motorized system designed to extract juice from the fruit. The system can be retrofitted with existing hand operated Mosambi juicer machine and the solution can be provided to new entrepreneurs as well.

- The solar juicer consists of light and mobile charging solutions so that the vendors could increase their sales by selling in the night time for the additional income.

In an urban scenario, the entrepreneur can pay back for the system by setting aside the cost sales from 6 glasses of juice every day for a period of approximately a year with interest rate of 12%)

Puffed rice is a type of puffed grain made from rice, commonly used in breakfast or snack foods in Karnataka and some other regions in India. It is prepared by roasting conditioned rice grains in a hot sand bed.
TECHNICAL SOLUTION

A portable solar solution has been designed which consists of an adjustable efficient DC fan and an adjustable 3W light fixture to function at night time with a light-weight lithium ion battery which can be used for a duration of 4 hrs per day. The solution provided for the entrepreneurs is a design that is installed on an opencart structure which can be mounted easily. Everything on the cart i.e. the panel, battery, light and fan can be easily removed and carried while moving from one place to another. The DC fan now helps reduce the drudgery of fanning by hand and can fan more than one corn in less time.

Banana chips are dried fried slices of bananas. They can be covered with sugar or honey and have a sweet taste, or they can be fried in oil and spices and have a salty or spicy taste. Fried banana chips are usually produced from under-ripe banana slices deep-fried in sunflower oil or coconut oil. Both ripe and unripe plantains are used for this type of chip preparation.

TECHNICAL SOLUTION

A 1 HP slicing machine powered by solar has been designed in specificity to a mid-size entrepreneur. With this machine, the entrepreneur would be able to slice around 100 to 150 kg of bananas per hour which if done manually can only slice 30 kg/day and therefore earn more income with increased productivity. Also due to the mechanised motion of slicing the chips, there is a consistency that is maintained in its thickness which helps improve the quality of chips and its taste.

Impact from the Pilot

<table>
<thead>
<tr>
<th></th>
<th>Pre intervention</th>
<th>Post Intervention</th>
<th>Percentage Increase/Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time saved in grilling the 3 to 4 corns simultaneously (minutes)</td>
<td>10</td>
<td>5</td>
<td>50%</td>
</tr>
<tr>
<td>Corns cobs sold per day (nos)</td>
<td>50</td>
<td>60</td>
<td>20%</td>
</tr>
<tr>
<td>Income earned per corn cob sold (INR)</td>
<td>20</td>
<td>25</td>
<td>25%</td>
</tr>
<tr>
<td>Net income per day</td>
<td>1000</td>
<td>1500</td>
<td>50%</td>
</tr>
</tbody>
</table>

Impact from the Pilot

<table>
<thead>
<tr>
<th></th>
<th>Pre intervention</th>
<th>Post intervention</th>
<th>Percentage Increase/Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working hours</td>
<td>3-4 hours</td>
<td>1 - 1.5 hours</td>
<td>66%</td>
</tr>
<tr>
<td>Output</td>
<td>30 kg</td>
<td>150 kg</td>
<td>400%</td>
</tr>
<tr>
<td>Income by selling banana chips</td>
<td>10,000</td>
<td>30,000</td>
<td>200%</td>
</tr>
</tbody>
</table>
In many parts of rural India, dairy farming is practiced on a large scale and there is high consumption of buttermilk. Especially in central parts of Karnataka, either they churn the curd manually or rely on electric butter churners. As the people here face a lot of power issues, even in the presence of an electric machine, they end up manually churning the milk - taking 60-75 mins to churn around 20 ltrs of curd.

Most rural households churn their own butter since it is fresh and cheaper than consuming store-bought butter. The health benefits from this practice are definitely superior to that of processed dairy products. Regardless, the process is time-consuming and often involves drudgery or fatigue - requiring a hand motion of 60 mins.

It is also a laborious job as it needs the time of one person for the entire processing cycle - leaving no time for any other activity.

TECHNICAL SOLUTION

An efficient solar powered agitator was developed which is aimed to be versatile, user friendly, ergonomic and aspirational especially for rural unelectrified households.

As a larger context, this device can also be a means of livelihood generation. For this solution, an old DC fan motor was used to churn the butter and this innovation was born out of a need to have a low cost locally manufacturable solar powered kitchen appliance that would be useful in remote regions of the country where grid supply is erratic or none.

India is the largest milk producing country in the world. Operation Flood programme has seen India producing 140 million tonnes of milk which resulted in the development and up-gradation of rural life. Butter is one of the most important value-added dairy products. India is the largest producer of butter with annual production of 5035 million tones. Out of the total production of milk in India, 1% is converted into butter.

Even though a lot of potential exists, the traditional dairy product preparation is labour intensive and the quality of finished products are highly variable in terms of physical, chemical, microbiological and sensory properties; so there is an urgent need to produce uniform and high quality products.

46. Butter Churner

47. Wet Grinder

Drudgery due to manual grinding

Those types of food preparation involving grinding, both at household and eatery levels take a considerable physical effort, which is compounded by the fact that there is usually a shortage of labour for these tasks. Also, because of the time invested in manual processing, the entrepreneur lost a large amount of their business.

Low Output

When the motion is manual, the speed is much less than a mechanised solution which leads to a lower output being produced.

IMPACT FROM THE PILOT

<table>
<thead>
<tr>
<th></th>
<th>Traditional stone grinder</th>
<th>Solar powered stone grinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME SAVEN D TO GRIND</td>
<td>45 - 60 minutes</td>
<td>1 - 1.5 hours</td>
</tr>
<tr>
<td>QUANTITY</td>
<td>5 - 7 Kg per eatery per day</td>
<td>15 - 18 kg per hour</td>
</tr>
</tbody>
</table>

77.77% reduction in time

30 kg * INR 10
INR 300 per day earning

INR 300 * 25 Days = INR 7500 per month

A solar powered wet grinder was designed to boost production and reduce drudgery. Using this solution a single grinding unit can cater to the needs of multiple eateries, saving all stakeholders time and resources.
Blacksmithy

As an ancient profession, the blacksmith has its roots dating back to thousands of years, producing a wide range of equipments and tools used in agriculture, construction, household and hardware products.

Despite the advances in modern mechanization, many blacksmiths still use outmoded methods to deliver their work, while some have graduated towards mini fabrication units. Access to energy is often the gap in making that transition from smithing to fabricating.

Depending on the scope of work, the scale of blacksmith operations vary across the value chain. Some have only basic tools, dealing with smaller household level or farming hand tools and engage in basic cutting and grinding. These blacksmiths usually have a temporary setup and are also nomadic in nature, moving from market to market or farm to farm. Others have larger smithing workshops, catering to larger farmer needs, and even the needs of the construction industry.

After carefully examining their fundamental processes, it was identified that access to sustainable energy could play a critical role in transforming three specific aspects of their work, and thus the profession. Different typologies of blacksmiths were identified: bring out the role and feasibility of energy access models for each.

Types of Blacksmiths

<table>
<thead>
<tr>
<th>Scale</th>
<th>Products Manufactured</th>
<th>User Group</th>
<th>Labour Requirements</th>
<th>Tools Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomadic</td>
<td>Household tools, small hardware products, small agri tools</td>
<td>Family members engage in the task with occasional assistance from customers</td>
<td>Hire 1-2 labourers depending on the workload; expenditure INR 10,000-15,000 for hand cranked blower</td>
<td>Manual blowers, hand cranked wheels, manual angle grinders and hammers</td>
</tr>
<tr>
<td>Small Scale</td>
<td>Household tools, small hardware products, small agri tools, cultural products</td>
<td>Hire 1-2 labourers depending on the workload; expenditure INR 10,000-15,000 for hand cranked blower</td>
<td>Hire 1-2 labourers depending on the workload; expenditure INR 10,000-15,000 for hand cranked blower + hammering</td>
<td>Solar powered portable or fixed blowers, manual blowers, hand cranked wheels, manual angle grinders and hammers</td>
</tr>
<tr>
<td>Mid-Scale</td>
<td>Agri tools or machinery, gates, railings, hardware products, automotive garages</td>
<td>Hire 2-3 labourers depending on the workload; expenditure INR 25,000-50,000 for hand cranked blower + hammering</td>
<td>Hire 2-3 labourers depending on the workload; expenditure INR 25,000-50,000 for hand cranked blower + hammering</td>
<td>Power hammers, heavy duty bending jig, quick change conversion dies, lathe machines, oxy-acetylene and arc welding</td>
</tr>
<tr>
<td>Large Scale</td>
<td>Agri tools or machinery, gates, railings, hardware products, automotive components, customized products, lifestyle products</td>
<td>Highly skilled tradesperson employed, expenditure INR 25,000-50,000 per day for hand cranked blower + hammering</td>
<td>Hire 2-3 labourers depending on the workload; expenditure INR 25,000-50,000 for hand cranked blower + hammering</td>
<td>Solar powered power hammers, power hammers, heavy duty bending jig, quick change conversion dies, lathe machines, oxy-acetylene and arc welding</td>
</tr>
</tbody>
</table>

A Blacksmith's Process

<table>
<thead>
<tr>
<th>Cutting</th>
<th>Heating of iron for easier shaping</th>
<th>Forging</th>
<th>Finishing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting of metal strips</td>
<td>Heating of iron for easier shaping</td>
<td>To shape metal by hammering</td>
<td>Heating of iron for easier shaping</td>
</tr>
</tbody>
</table>

Tools Used:
- Manual blowers, hand cranked wheels, manual angle grinders and hammers
- Solar powered portable or fixed blowers
- Solar powered power hammers

Energy Intervention

- **Cutting:** Angle Grinder
- **Heating:** Fan Blower, Power Hammer
- **Forging:** Manual blowers, hand cranked wheels, manual angle grinders and hammers
- **Finishing:** Angle Grinder

There are above 7.5 million blacksmiths currently practicing in India.
SELCO Foundation designed a high efficient, high quality, powerful blower solution for the blacksmiths. The standard capacity motors (0.25 HP/ 0.5 HP) are oversized and run at high-speed. This makes it difficult to operate, especially for blacksmiths working with small workpieces. Thus, heat is only partially used, and most of it goes to a waste. Optimization and scaling down of the blower, resulted in development of a range of efficient and affordable solutions for smaller blacksmiths. The innovation also kept in mind the need for ergonomic design with suitable air flow control. The addition of a speed controller provides good airflow control to suit the size of the workpiece.

48. Blacksmith Fan Blower

The Blacksmiths hire labour to work the hand cranked fan blowers or bellows to keep the fire burning during forging of metal. Due to the high costs, and unavailability of labour, blacksmiths involve members of their family in the task—often taken up by children or women in the household.

HIGH COST OF LABOUR

Approximately INR 2000 Per Week

TECHNICAL SOLUTION

Exposure to harmful fumes and long hours of work make blacksmithy a hazardous occupation. Currently, blacksmiths use large wheels, hand-cranked blowers that are utilised to maintain and regulate temperatures of the fire. The methods of igniting and keeping the furnace running, add to the drudgery.

EXTREME DRUDGERY

Injuries to Hand, Wrist, Eyes, Legs, Fingers, Face

SOLAR MODULE (Wp)

15W Blacksmith Blower 60

60W HD Blacksmith Blower 200 250

BATTERY (Ah)

15W Blacksmith Blower 240 1200

60W HD Blacksmith Blower 960 1200

CHARGE CONTROLLER

15W Blacksmith Blower 10A 12V PMDC

60W HD Blacksmith Blower 10A 24V PMDC

FAN

15W Blacksmith Blower 15 W 2800 8

60W HD Blacksmith Blower 60 W 2800 8

CFM stands for cubic feet per minute (it is also referred to as airflow). Put simply, CFM is how much air a fan moves. The measurement is taken when the fan is on its highest speed and uses both the volume of air and the rate at which it moves.

Here is an example of how higher airflow being generated by the blower helps in reaching higher heating temperatures—thus saving time.

COMPARISON OF BLOWERS

<table>
<thead>
<tr>
<th></th>
<th>Small Scale & Nomadic</th>
<th>Medium Scale</th>
<th>Large Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATTAGE</td>
<td>15 W</td>
<td>30 W</td>
<td>50 W</td>
</tr>
<tr>
<td>CFM</td>
<td>8</td>
<td>24</td>
<td>80</td>
</tr>
<tr>
<td>TIME TAKEN FOR HEATING AN TOOL</td>
<td>15</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>
The solution integrates financial access that is customized to the existing cash flow. The loan is designed such that the labour charges became the EMI payment along with additional earnings. As the payback period for the solution is really short (2-4 months) considering saving in labour cost, it is an affordable solution for blacksmiths.

FINANCIAL SOLUTION

EXTREME DRUDGERY, DANGER AND HIGH LABOUR COSTS

- Shaping heated metal is a very force intensive process and is commonly achieved by manual hammering, which requires an extra person (commonly labourers or the son of the household) depending upon the task at hand to hammer the piece in sequence. This can be very exhaustive and extremely dangerous, considering the lack of safety measures and force/proximity values, and high labour costs.

UNRELIABLE POWER AND USE OF DIRTY FUELS

- Some metal workers and blacksmiths will also invest in an AC powered power hammers and angle grinders, however these often have very high power consumptions and operate on diesel. They also become inoperable during power outages.

IMPACTS

IMPROVED HEALTH & WELLBEING

All the blacksmiths where interventions were carried out, reported a reduction in impact of injuries related to physiological and upper limb musculoskeletal disorders (MSD). This has improved the health and wellbeing of not only blacksmiths, but of children and women engaged in the livelihood.

INCREASED PRODUCTIVITY

With the additional provision of lighting, the workshop operational hours get extended by 2-3 hours per day thereby improving their productivity during peak season.

- Percentage increase in productivity of the blacksmith: +20 - 30%
- Percentage decrease in operational expenses of the blacksmith: -45%

INCOME INCREASE

- Without the additional requirement of a typically difficult to find and expensive labourer, the expense component for the blacksmith has come down drastically.

POWER HAMMER - TECHNICAL SOLUTION

- A solar hybrid system was designed to be a retrofittable system, as the diesel motor was not completely replaced and could be activated again when reconnected with the belt drive.
- The user is required to loosen the bearings of the belt drive for the diesel motor to be replaced with the DC motor. The DC motor takes the role as the predominant motor whilst the diesel takes a secondary stance. The two motors can be now used alternatively depending on the energy source.

ANGLE GRINDER - TECHNICAL SOLUTION

Sharpening the tools require some amount of physical effort; this is specifically true for blacksmiths who deal with larger machinery tools or components for the construction industry where angle grinding is a significant part of the work. The existing methods are manual or pedal powered and battery operated hand held angle grinders. Being primarily in rural areas, the battery operated hand held angle grinder was provided a back-up. A micro-inverter for converting AC to DC.
CASE STUDY

Leelavathi
Blacksmith Entrepreneur

Leelavathi, is a single mother supporting her 3 daughters. Housed in a rented premises, along with her brothers, Leelavathi makes a living by making general and specialized tools (e.g. for rubber tapping), earning approximately INR 400/- per day.

Leelavathi approached a leading banking correspondent in the state of Karnataka for financing the equipment, as a short term loan for 18 months with weekly payments of INR 250 (approximately equal to the amount spent on labour per day in case of a power outage). The biggest impact, as cited by her, has been the reduction in drudgery and the physical exertion required because of the motorised blower.

CASE STUDY

Nagarajappa
Blacksmith Entrepreneur

Nagarajappa from HD Pura, Chitradurga district is a traditional blacksmith who has been engaged in the craft for decades. A solar powered blacksmith blower was installed in his work space over a year ago which has had positive impacts on his health with respect to drudgery and on his income and productivity.

He had invested in a mechanical power hammer which was previously diesel powered. The engine would guzzle a lot of diesel and would produce a lot of noise and smoke which would engulf his shed. One to two liters of diesel would run for three to four hours while incurring an expense of INR 2625 per month.

A retrofit solar powered DC motor was installed on the existing power hammer completely eliminating the diesel cost, smoke and noise pollution. He also has the flexibility to make a new product for which he charges INR 60 per tool. Post the intervention, his income excluding diesel cost has come to INR 6850 per month and he hopes to innovate on more products and designs.

CASE STUDY

Ashok Pawar
Blacksmith Entrepreneur

Ashok Pawar, from Dharwad, initially had an AC blower and a power hammer. A demo of the HD Blower was provided to the entrepreneur as a value-add to his process chain. After a month of deliberation, he was interested in buying the blower as he faced frequent power cuts causing disruptions in his work leading him to manually complete the entire process by hand.

The main challenge was having to hire an extra labourer when he was working with the manual machine. For all the work that he was engaged in, he needed a bigger machine which was time and heat consuming with a low airflow speed. The older AC blower’s motor also generated a lot of noise and when used manually, leads to health deterioration as well.

The solar powered blower was financed by SKDRDP, a local MFI. The whole unit can now be run by one person allowing him to save on major labour costs. His the poor impact on his health has reduced as well.

CASE STUDY

Venkatachari
Blacksmith Entrepreneur

Venkatachari is a physically challenged blacksmith living in Devalaapura village, Mandya district. Blacksmithy is his family business and primary source of livelihood. He used to have a hand-cranked manual blower which had to be rotated by the customer himself. Two years ago, a solar powered blower was installed at his site. The total cost of the blower was financed by SKDRDP, a microfinance institution with margin money support received from SELCO Foundation. He initially would receive orders of 5-6 farm tools per day but post installation, he has been getting orders of 20-30 tools per day. During the peak season in the months of January, July and September he is able to get an order of 30-40 tools per day. He has successfully cleared the entire loan with the increased savings generated with the machine. He charges INR 20 per sickle and receives 10-15 tools from farmers on a regular basis as he is able to finish his work faster with the help of the solar powered blower.
Carpentry
Carpentry is one of the oldest crafts in India. A good carpenter can always find a gainful employment even in a village with poor purchasing power of the people. Carpentry involves the usage of power-driven equipment, but due to off-grid situations or unreliable power in the rural areas, carpenters often face difficulty in completing the order in time. The off-grid situation makes the carpentry work drudgery intensive.

The carpenters and artistic craft makers reported a decrease in time taken to craft various products. This has helped them in meeting the orders on time, resulting in satisfaction in the customer, as well as confidence in the carpenter to take up larger orders.

In case of finer carvings, in some cases, neatness in the work can be achieved by even the lesser-skilled carpenters—adding value and increasing the scope for design.

Technical Solution & Impact

Planer, Side/angle Grinder, Drill Machine & Circular Saw

<table>
<thead>
<tr>
<th>Energy System</th>
<th>Motor Type</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLAR MODULE (Wp)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>BATTERY (Ah)</td>
<td>8640</td>
<td></td>
</tr>
<tr>
<td>SPCU</td>
<td>1.6 kW 2 kVA 24 V</td>
<td></td>
</tr>
</tbody>
</table>

PRODUCT QUALITY IMPROVED

In case of finer carvings, in some cases, neatness in the work can be achieved by even the lesser-skilled carpenters—adding value and increasing the scope for design.

PRODUCTION EFFICIENCY INCREASED

The carpenters and artistic craft makers reported a decrease in time taken to craft various products. This has helped them in meeting the orders on time, resulting in satisfaction in the customer, as well as confidence in the carpenter to take up larger orders.

Common Carpentry Tools

- **51. Side Planer**
 - Smoothening as well as removing rough edges

- **52. Power Drill**
 - Making holes and driving screws

- **53. Wood Lathe Machine**
 - Shaping of wood material

Small Scale Carpenter

- **Products Manufactured**
 - Chairs, tables, beds, sofa sets, doors, windows, etc.

- **Markets**
 - Local villagers

Skilled Carpenter for Decorative Pieces

- **Products Manufactured**
 - Artist costumes, beads, gift items, etc.

- **Markets**
 - Artist costumes, beads, gift items, etc.
Pottery
POTTERY

Pottery is one of the oldest traditional livelihoods in India, and thrives as both an art form and a means to create functional items. The craft has been practiced and passed on over generations with the form constantly evolving.

In the last decade, the industry has been introduced to technological interventions aimed towards reducing drudgery. However lack of access to information, lack of markets, absence of reliable source of energy and easy financing holds back the community to completely switch to modernisation.

The need of efficient technological interventions supported by sustainable energy in the whole process chain of the pottery making were studied. Based on this, four processes were identified and subsequent solutions have been developed and deployed.

In the traditional pottery methods, the pottery wheel is continuously rotated manually. Either the potter switches between the activities of making the pot and rotating, or family members are involved in rotating of the wheel. This takes considerable amount of time and physical effort. The traditional pottery wheel is also extremely heavy. If the wheel loses balance while rotating, there are high chances of injuries.

The pottery wheel implemented was retrofitted with an efficient PMDC motor, designed for better balance and integrated with customized speed controller for easy operation.

The type of market (size and kind of products made and number of units produced) determines the viability and feasibility of the extent of technical intervention in the production value chain (detailed below). With demand, the potters progress from using manual wheel to electric pottery wheel to a combination of motorized pug mill and pottery wheel.

LABOUR DEPENDENT

It’s very difficult for a potter to do all other jobs like mixing the clay, kneading the clay, throwing and finally burning them in a kiln, so there is skilled labour requirement. However, in most cases, there is shortage of skilled labour.

LOW PRODUCTIVITY AND PHYSICAL DRUDGERY

The productivity of the pots or any other products associated to the wheel is very low as it takes a lot of time to make any product in a manual wheel and the work comes to a stand still in case of power cuts while using an electric wheel.

| Time taken to knead one batch of clay (Stomping of legs) | 5 HOURS |

| No. of people to make one pot manually | 2 |

| Percentage decrease in time taken to mould and scrape one pottery article | 25 - 50% |

54. Pottery Wheel

In the traditional pottery methods, the pottery wheel is continuously rotated manually. Either the potter switches between the activities of making the pot and rotating, or family members are involved in rotating of the wheel. This takes considerable amount of time and physical effort. The traditional pottery wheel is also extremely heavy. If the wheel loses balance while rotating, there are high chances of injuries.

The pottery wheel implemented was retrofitted with an efficient PMDC motor, designed for better balance and integrated with customized speed controller for easy operation.

 Mixing clay is an important activity in pottery. Mostly done manually, potters spend around 4 days in mixing the clay. Specifically for potters with large orders, this take significant amount of their time. A blunger is a machine commonly used in the pottery industry for making ‘slip’ (a mixture of clay and water). A blunger usually consists of a round or octagonal tank with a mixer. Clay is added to the water filled blunger and then mixed into a slurry.

55. Blunger & Pugmill
Currently kneading is done by stomping on the clay. Manually, in this manner, it takes around 5 hrs to knead one batch of clay. Through a pugmill, the potter is able to knead a 10 kg batch of clay within 2 hrs, while able to tend to his other work at the same time.

Firing clay pots is one of the most important stages in pottery. But traditionally used kilns are inefficient, leading to heat losses and uneven baking of the pottery. Procuring firewood has also become challenging in some cases. The current kilns lead to almost 20% wastage of the firewood used. An efficient updraught kiln was built which consumes 40% less fuel and energy as compared to traditional kilns.

EFFICIENT KILN

<table>
<thead>
<tr>
<th>Percentage of time saved by the pugmill</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of fuel saved by the efficient kiln</td>
<td>40%</td>
</tr>
</tbody>
</table>

Raghu Kulal is a traditional potter hailing from the village Aloor where the primary occupation used to be pottery for most households in the community. Most potters have given up on the craft due to drudgery, erratic power supply causing a hindrance in their work, not enough market linkages and support. Mr Kulal has orders coming in through the year but was unable to meet them as he couldn't use his electric wheel during power cuts. He was on an average earning INR 15000 before the intervention per month. Post the installation of the solar powered DC wheel, he has started earning INR 45000 per month and is able to meet his orders.

Due to the larger orders, technical interventions were also brought in to mechanize the other pottery making processes - a pugmill, blunger and an efficient kiln were installed. By enrolling himself in a skill building program with a local organization (Namma Bhoomi), Mr Kulal was also able to diversify his product range to include terracotta jewelery, decorative pots, cookware etc. He has since registered a proprietor enterprise - "Guruvandana Pottery Products" and has employed a designer for terracotta jewelry making. He has also opened a small exhibition space to showcase and market his product.

Holehosur, a small village in the Bailhongal taluk houses 12 traditional potter families, who have had the skill passed on to them over generations. Over the past few years, excepting one or two families, all the families have switched to AC electric wheels. These cheaply available wheels are manufactured in Belgaum (a nearby district) and have flooded the market. Due to these wheels, the potters are susceptible to frequent electric shocks and have loss in working hours due to 2-3 hours of power cuts every day. The diameter of the AC wheel is also small allowing the potters to stack 25 kgs of clay at a time reducing the productivity. The potters could make a total of 180 flower pots earning INR 3060 a day on working days.

One of the families from the community took up the solar powered DC pottery wheel a year ago and are now able to make 300 flower pots a day earning INR 5100. Due to the diameter of this wheel being larger, they can now stack up to 40 kgs of clay and the chances of electric shocks are now zero as well. The family is keen on taking up the pug mill, blunger and the efficient kiln too and will be assisted with market linkages as their productivity will shoot up considerably.

CASE STUDY

Ningappa

Potter

Holehosur, a small village in the Bailhongal taluk houses 12 traditional potter families, who have had the skill passed on to them over generations. Over the past few years, excepting one or two families, all the families have switched to AC electric wheels. These cheaply available wheels are manufactured in Belgaum (a nearby district) and have flooded the market. Due to these wheels, the potters are susceptible to frequent electric shocks and have loss in working hours due to 2-3 hours of power cuts every day. The diameter of the AC wheel is also small allowing the potters to stack 25 kgs of clay at a time reducing the productivity. The potters could make a total of 180 flower pots earning INR 3060 a day on working days.

One of the families from the community took up the solar powered DC pottery wheel a year ago and are now able to make 300 flower pots a day earning INR 5100. Due to the diameter of this wheel being larger, they can now stack up to 40 kgs of clay and the chances of electric shocks are now zero as well. The family is keen on taking up the pug mill, blunger and the efficient kiln too and will be assisted with market linkages as their productivity will shoot up considerably.
Cottage Industries
COTTAGE INDUSTRIES

Cottage industries are small scale manufacturing industries that are operated out of the homes or decentralized work spaces of producers. They often supply a fixed set of niche products or services and operate on a smaller output scale in comparison to larger businesses with larger capital capacity. Before the rise of industrialization, most products were produced using cottage industries, and in parts of the world such as Asia, South America and India, cottage industries are still a dominant force. Some examples are rope makers, cotton wick makers, and paper plate makers.

Those who are employed or own cottage industries often rely on the particular craft or skill that they may have inherited as their sole source of labour. As a result, they suffer with the challenges such as competition from big industries in the form of factory production that relies on cheap and low labour production with the use of machines, non-traditional but more efficient fabrication techniques and economies of scales leading to reduced costs.

ROPE MANUFACTURING
Rope spun from coir, plastic, grass etc.

Energy Intervention
Coir yarn spinning machine, rope spinning machine

STONE SCULPTING
Grinding and Polishing Tools

Energy Intervention
Stone polisher

COTTON WICK MANUFACTURING
Wicks for traditional candles

Energy Intervention
Cotton wick making machine

PAPER PLATE MAKING
Powering the plate making value chain

Energy Intervention
Paper plate pressing machine

57. Coir Ratt and 58. Rope Spinning

Rope making is a very versatile livelihood, with many practitioners being able to make rope out of any material that can be defibred with a high tensile strength. One of the most common materials used is coir which is the native name of the fibre extracted from coconut husk, however among this other materials that are used include, sabai grass, plastic bags and plastic/nylon products. Rope makers can be categorised by the material they are using or the length of rope they produce, the latter of which often dictates the device they use to create.

HIGH AMOUNT OF LABOUR AND LOW PRODUCTIVITY
Excess labourers are required to carry out monotonous and drudgery prone tasks which can be automated.

- No. of people required to make one batch of rope manually
 3-5

- No. of times the wheel set has to be turned to produce one batch of rope
 360 revolutions

HIGH DRUDGERY AND CHANCES OF INJURY
Certain lengths of rope and materials used can be very demanding for the labourer who is responsible for turning the spinndles. Users often experience shoulder pains after work, which in the long run could lead to health issues and disability.

UNRELIABLE POWER
Coir industry hotspots suffer from power outages on a regular basis which leads to productivity loss.

TECHNICAL SOLUTION

A range of rope making machines have been innovated which can be used for thin to thick ropes of differing materials. These devices would help to reduce the drudgery incurred as well as the labour required for the particular role of turning the wheel, by motorising the wheel.

The devices took into consideration keeping traditional habits and anthropometrics of the manual method. The space in between the hooks on the devices will be similar to that of that found on the manual. Apart from serving the practical purpose of being ideal for catching the thread when hooking and unhooking, it means the learning curve for the users is lower and allows them to apply their pre-existing methods and habits, at no extra cost.

Energy System

<table>
<thead>
<tr>
<th>Solar Module (Wp)</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery (Ah)</td>
<td>720</td>
</tr>
<tr>
<td>Charge Controller</td>
<td>10A 12V</td>
</tr>
</tbody>
</table>

Motor

<table>
<thead>
<tr>
<th>Capacity</th>
<th>30W (10 x 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>4000 x 3</td>
</tr>
<tr>
<td>Backup Hours</td>
<td>0</td>
</tr>
</tbody>
</table>

Coir Ratt Spinning with SW LED Light

Rope Spinning
4 Spindle

- 0.5 HP
- 1500
Creating cotton wicks at an individual rate by hand often takes a long duration and individual workers differ in efficiency due to their learning curve and level of experience.

LOW PRODUCTIVITY AS A RESULT OF MANUAL OPERATION

| No. of cotton wicks produced manually per hour | 8-10 |

One of the prominent activities in the Indian cottage industry is the labour intensive cotton wick making segment. Cotton wicks for small candles are mostly made by women using their hand manually.

The cotton wick making machine produces wicks of uniform shapes and sizes. This machine is easy to operate, portable and requires very less maintenance. The cotton wick machine is solar powered to allow continuous operation of the machine even during power outages.

REDUCED DRUDGERY

Automation of the machine reduces risk of injury that would occur if the end user was required to turn the wheel.

REDUCED OPERATIONAL COSTS

The reduction of labour required to make rope reduces overall costs incurred which increases profitability.

REDUCED CAPITAL COSTS

The cost of operating the machine has also dropped when compared to many AC powered rope making machines which are often oversized for production.

In many historic locations of India, decorations with ornate carvings or sculptures of deities, animals and humans etc. This art form called stone sculpting or stone carving still continues on. However, a number of issues means that it is slowly fading out of practice.

LACK OF UPDATED TECHNOLOGIES

Stone polishers continue to use outdated technologies and manual methods which can be inefficient and cause low productivity.

SCOPE FOR QUALITY IMPROVEMENTS

Often the stone quality finish is not on par with what could be accomplished with stone polishing tools because of which local craftsmen cannot command higher price points.

60. Stone Polishing

This solution involves repurposing the existing angle grinders used by blacksmiths. The design involves solar powering of a selected angle grinder with stone specific polishing pads and blades. The angle grinders are lithium ion battery run for versatility and are solar charged. This allows the end users to complete their work at a much faster pace and achieve a better finish which could be marketed at a higher price.

TECHNICAL SOLUTION

- **Energy System**
 - Solar Module (Wp): 75
 - Battery (Ah): 960
 - SPCU: 500 VA 12V
 - Charge Controller: 24A 12V

- **Motor**
 - Capacity: 54W 18V
 - Inbuilt Battery: 3 Ah/5 Ah Li ion (2)
 - RPM: 8500
 - Backup Hours: 1

This solution involves repurposing the existing angle grinders used by blacksmiths. The design involves solar powering of a selected angle grinder with stone specific polishing pads and blades. The angle grinders are lithium ion battery run for versatility and are solar charged. This allows the end users to complete their work at a much faster pace and achieve a better finish which could be marketed at a higher price.

61. Paper Plates

Paper plates have a huge demand in the market and are available in different shape, diameter and design. Production of paper plates require - paper which is laminated with thin plastic or aluminium foil, a cutter to cut laminated paper into the desired shape, and a compressor for pressing paper in the die. The third process requires heat as well as energy for compressing.

TECHNICAL SOLUTION

Paper plate making machines solarised to provide additional 3 hours of backup. Additional saving on labour achieved when compared to the usage of the manual pressing machine. The machine can produce 1960 plates every hour.
Services & Retail
Lack of energy access not only limits the opportunities of small businesses in creating new revenue streams but also impedes the existing business to run smoothly. Additionally, for the people in rural and peri-urban areas, the unavailability of electricity results in the absence of basic facilities such as printing and photocopying, and often makes them travel long distances in search of the services.

Presented in this section are interventions that have complemented small retail businesses and helped establish new livelihood solutions and streams.

DIGITAL SERVICES
Printing, scanning and photocopying facilities in under/un-electrified rural, urban, peri-urban areas.

COLD STORAGE
Cold storage facilities for petty stores, small restaurants to store drinks, dairy products, ice creams and other perishable products.

MECHANICAL
Air refilling facilities replacing inefficient machines or as an additional service at the repair shops.

INTEGRATED ENERGY CENTERS
Integrated Energy Centers offer multiple services for the local community.

LACK OF ACCESS TO COLD STORAGE FACILITIES
For the local dairy farmers to sell their home-made dairy products (milk, butter, curd etc.) makes them travel longer distances.

UNFULFILLED DEMAND FOR COLD PRODUCTS
Hotter and prolonged summers have necessitated a great demand for locally produced cold drinks and milk products in rural areas.

TYPOLOGIES OF SOLUTIONS

Mobile Solutions
These ‘Fridges on the Move’ have provided a great platform for entrepreneurs who own mobile food stalls. Entrepreneurs use it mounted on trucks and other vehicles and travel to places with high footfall.

Petty Shops
Rural and semi-urban micro entrepreneurs in the hot, arid regions have expanded their product range to locally produced cold drinks and milk products in their petty shops. Apart from drinks, it has been used to keep flowers fresh by the vendors next to a temple.

Cafes
The availability of freezer allows the entrepreneurs to add new products such as ice cream, fish and also preparation of ice cubes helped them attracting more customers. Other products include home-based milk items, dosa batter, sprouts etc.

Medium DC Refrigerator

Large DC Refrigerator

AC Refrigerator/Freezer
Based on the requirements and constraints, different capacity fridges are implemented ranging from 100 Ltr to 240 Ltr. Using R135 as the refrigerant and with efficient DC compressors, these fridges work at a relatively low wattage, and by replacing high energy consuming refrigerators, on a day with an average temperature of 25 deg, they consume power as low as 0.1KWh per day.

Design of the system needs to keep in mind the optimal temperature and the kind of stored goods. Efficient DC refrigerators can potentially result in reduction in energy consumption by 90%.

Increase in profit post intervention (INR)

<table>
<thead>
<tr>
<th>Energy System</th>
<th>SOLAR MODULE (Wp)</th>
<th>BATTERY (Ah)</th>
<th>CHARGE CONTROLLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devidayal (100 L)</td>
<td>200</td>
<td>2400</td>
<td>20A 12V</td>
</tr>
<tr>
<td>Devidayal (268 L)</td>
<td>750</td>
<td>4900</td>
<td>40A 24V</td>
</tr>
<tr>
<td>Photos (240 L) Light Usage</td>
<td>300</td>
<td>1920</td>
<td>Inbuilt Charge Controller</td>
</tr>
<tr>
<td>Photos (240 L) Heavy Usage</td>
<td>500</td>
<td>3600</td>
<td>Inbuilt Charge Controller</td>
</tr>
</tbody>
</table>

Geographical Location
Small retail stores and hotels in hotter and drier regions have catered to higher demands.

Supply Chain
Availability of fridge appliances via local vendors along with adequate after sales service.

Finance
Availability of cash flow based financial products via local financial institutions increases the uptake and affordability vs upfront cash payments.

Market Innovation
Creating better seating atmosphere in the small hotels, promoting local soft drinks, adding other types of products to be cooled.

63. Digital Services
Printers & Photocopiers, Photo Studio

EXISTING DEMAND AND UNAVAILABILITY
Access to digital services is integral for financial institutes, government offices, identity documentations, schools and colleges, business transactions, record keeping etc. Without these basic digital services in rural, tribal and peri-urban areas, end users lose significant time and money to access or reach these services.

INEFFICIENT DELIVERY OF SCHEMES
With government records and schemes getting dependent on digital records, energy divide leads to a digital divide. Inaccessibility to digital services in rural, tribal and peri-urban areas is an obstacle delivering government social and financial inclusion schemes.

LOW PRODUCTIVITY AND INCOME
Even if the facility exists, several times the extremely erratic power with varied voltage fluctuations has led to disruption in the entrepreneurs business (leading to breaking down of expensive equipment, inconsistent service provision and loss in income).

The following factors have played a big role in the success of the solar refrigerator implementations:

- **Geographical Location**
 Small retail stores and hotels in hotter and drier regions have catered to higher demands.

- **Supply Chain**
 Availability of fridge appliances via local vendors along with adequate after sales service.

- **Finance**
 Availability of cash flow based financial products via local financial institutions increases the uptake and affordability vs upfront cash payments.

- **Market Innovation**
 Creating better seating atmosphere in the small hotels, promoting local soft drinks, adding other types of products to be cooled.

<table>
<thead>
<tr>
<th>Motor CAPACITY</th>
<th>BACKUP HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>65W</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor CAPACITY</th>
<th>BACKUP HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>115W</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy System</th>
<th>CAPACITY</th>
<th>BACKUP HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devidayal (268 L)</td>
<td>65W</td>
<td>24</td>
</tr>
<tr>
<td>Photos (240 L) Light Usage</td>
<td>65W</td>
<td>24</td>
</tr>
<tr>
<td>Photos (240 L) Heavy Usage</td>
<td>65W</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market Source</th>
<th>User Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETTY SHOPS/HOME BASED</td>
<td>Petty shop owners, home based woman entrepreneurs</td>
</tr>
<tr>
<td>DIGITAL CENTRES</td>
<td>Small entrepreneur with separate infrastructure near offices/academic establishments</td>
</tr>
<tr>
<td>INSTITUTIONAL</td>
<td>Institutions, and establishments to meet internal documentation work</td>
</tr>
</tbody>
</table>

Increase in profit post intervention (INR)

<table>
<thead>
<tr>
<th>Total no. of dairy units sold in one highlighted case</th>
<th>Resultant turnover increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1280 Per day</td>
<td>INR 1030 Per day</td>
</tr>
</tbody>
</table>

The following factors have played a big role in the success of the solar refrigerator implementations:

- Geographical Location
 Small retail stores and hotels in hotter and drier regions have catered to higher demands.

- Supply Chain
 Availability of fridge appliances via local vendors along with adequate after sales service.

- Finance
 Availability of cash flow based financial products via local financial institutions increases the uptake and affordability vs upfront cash payments.

- Market Innovation
 Creating better seating atmosphere in the small hotels, promoting local soft drinks, adding other types of products to be cooled.

The following factors have played a big role in the success of the solar refrigerator implementations:

- Geographical Location
 Small retail stores and hotels in hotter and drier regions have catered to higher demands.

- Supply Chain
 Availability of fridge appliances via local vendors along with adequate after sales service.

- Finance
 Availability of cash flow based financial products via local financial institutions increases the uptake and affordability vs upfront cash payments.

- Market Innovation
 Creating better seating atmosphere in the small hotels, promoting local soft drinks, adding other types of products to be cooled.

Increase in profit post intervention (INR)

<table>
<thead>
<tr>
<th>Total no. of dairy units sold in one highlighted case</th>
<th>Resultant turnover increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1280 Per day</td>
<td>INR 1030 Per day</td>
</tr>
</tbody>
</table>

The following factors have played a big role in the success of the solar refrigerator implementations:

- Geographical Location
 Small retail stores and hotels in hotter and drier regions have catered to higher demands.

- Supply Chain
 Availability of fridge appliances via local vendors along with adequate after sales service.

- Finance
 Availability of cash flow based financial products via local financial institutions increases the uptake and affordability vs upfront cash payments.

- Market Innovation
 Creating better seating atmosphere in the small hotels, promoting local soft drinks, adding other types of products to be cooled.
The digital solution centre gives a comprehensive set of solutions from single photocopy machine to multiple systems to provide several digital services, all powered by solar energy. Depending on whether the service is housed in a petty shop, as an additional source of income or a full-fledged service, different combinations of technical solutions are provided.

3 different technical solutions are designed depending on the scale of the digital service centre. This is packaged with computer and software training.

TECHNICAL SOLUTIONS

3 different technical solutions are designed depending on the scale of the digital service centre. This is packaged with computer and software training.

FINANCIAL SOLUTION

Considering the exact requirement and cash flow that’s generated through the digital services, different elements of financial linkage are designed. The direct correlation between the number of digital services and the increase in average profit dictates the EMI, and since most of the centres are situated close to the localities of school and offices, it is observed that the presence of different services compensates for the dip in the revenue generated through certain services during the holiday seasons, hence allowing the entrepreneurs to maintain the EMIs.

Note - The financial product above is an example for a specific service combo (Photocopy + Laptop + Camera). Refer to graph below:

<table>
<thead>
<tr>
<th>Avg revenue collected from photocopying service per day (INR)</th>
<th>9000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Month</td>
<td></td>
</tr>
</tbody>
</table>

PRINTING, PHOTOCOPYING WITH SW LIGHT

<table>
<thead>
<tr>
<th>SOLAR MODULE (Wp)</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATTERY (Ah)</td>
<td>360</td>
</tr>
<tr>
<td>CHARGE CONTROLLER</td>
<td>10A 12V</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>15W</td>
</tr>
</tbody>
</table>

EMI AMOUNT

<table>
<thead>
<tr>
<th>(As per cash flow)</th>
<th>INR 1900</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMI AMOUNT</td>
<td>INR 1900</td>
</tr>
<tr>
<td>LOAN TENURE</td>
<td>4 Years</td>
</tr>
<tr>
<td>INTEREST RATE</td>
<td>10.3%</td>
</tr>
<tr>
<td>MARGIN MONEY</td>
<td>20% of Total Cost</td>
</tr>
</tbody>
</table>

Note - The above financial product is an example for a specific service combo (Photocopy + Laptop + Camera). Refer to graph below:

IMPACTS

NEW SOURCE OF INCOME

Solar Digital Solution Centres owned by women entrepreneurs at households have helped them in adding to their earning potential and to some extent social standing within the society.

- Percentage of users with the solution as a new income source: **20-25%**

LIVELIHOOD OPTION FOR PEOPLE WITH DISABILITIES (PWD)

As it has been seen in several cases, an unintended positive impact of the asset was that it was well accessible to differently abled individuals, so many have been provided with new livelihood options.

- Percentage of PWDs with such systems: **5%**

ACCESS TO SERVICES

Presence and access to digital services have facilitated the remote communities to transcend the barriers that limited the access to and flow of information. Long durations spent in order to access the services have been reduced due to the centres, and have helped the rural and semi-urban daily wage dependent workers to save their half day to full day wages.

- Amount of money at an average saved on travel per person accessing the service: **200-300 INR**

INCREASING NUMBER OF VEHICLES

An increasing vast road network in the rural and semi urban areas necessitate opportunities for more servicing centers due to the suboptimal road conditions.

DIESEL BASED AIR COMPRESSORS

Run by diesel power or inconsistent main grid, the current air compressors aren’t easy to work with in the smaller service shops, and the powercuts result in everyday losses.
The temporary nature of slum/nomadic communities makes them incapable of accessing stable energy sources in their makeshift households.

Financial institutions find it very hard to create financial linkages for each member of the community due to the lack of documents and ephemeral nature of their stay pattern.

Considering the remoteness of certain tribal communities, providing individual systems becomes uneconomic and servicing becomes a daunting challenge. Hence systems aren’t sustainable.

With the community mindset that’s been moulded by years of hardship, the awareness and priority towards energy access is very low.

An entrepreneur providing rental batteries to members of his labour housing colony

Solar lights from the community members are charged in the IEC during the day, and the lamps are taken back in the evening. A nominal fee is charged (INR 10/day) to charge the battery.

Along with batteries for powering lights, mobile charging facilities are also provided at such centres, which saves both travel expenses and opportunity costs incurred.

Water purification systems run using capacitive de-ionisation technology. On the chosen days, the IEC is used as a community health clinic, and the doctors have a clean space to consult, store medicines and conduct awareness programs.

The expenses on electricity and diesel have become nil. In the tenure period of 2.3 years depending on the financial circumstances, the air compressor will run without any cost. The EMI is designed in such a way that it matches or less than the amount they spent pre-intervention.

It has been observed that the number of vehicles attended to has increased due to the reliability of solar air compressors as the prevalent powercuts in the rural regions haven’t affected the work.

It has been observed that the number of vehicles attended to has increased due to the reliability of solar air compressors as the prevalent powercuts in the rural regions haven’t affected the work.

The community has constantly expressed how wonderful it is to see light for the first time in their homes and especially for the artisanal communities, they feel more productive and active even after sundown. Other solutions such as drinking water facilities, health & education centers at IECs have helped communities to access services and information that were beyond their reach before. IECs have also helped in bringing a general sense of belongingness as centres become a hub. Often remote rural communities spend a large percentage of their wages in commuting to farther distances to access basic services, sometimes spending around Rs. 300 just to get a Rs. 10 photocopy done. Services at IECs have made it more accessible.

The temporary nature of slum/nomadic communities makes them incapable of accessing stable energy sources in their makeshift households.

Financial institutions find it very hard to create financial linkages for each member of the community due to the lack of documents and ephemeral nature of their stay pattern.

The community mindset that’s been moulded by years of hardship, the awareness and priority towards energy access is very low.

With the community mindset that’s been moulded by years of hardship, the awareness and priority towards energy access is very low.

SOLAR MODULE (Wp) 300
BATTERY (Ah) 500
SOLAR MODULE (Wp) 3120
BATTERY (Ah) 5280

INCREASE IN PROFIT
+40%

The EMI is designed in such a way that it matches or less than the amount they spent pre-intervention.

The community has constantly expressed how wonderful it is to see light for the first time in their homes and especially for the artisanal communities, they feel more productive and active even after sundown. Other solutions such as drinking water facilities, health & education centers at IECs have helped communities to access services and information that were beyond their reach before. IECs have also helped in bringing a general sense of belongingness as centres become a hub. Often remote rural communities spend a large percentage of their wages in commuting to farther distances to access basic services, sometimes spending around Rs. 300 just to get a Rs. 10 photocopy done. Services at IECs have made it more accessible.
CASE STUDY
Digital in Odisha
Entrepreneurs in Sunger, Badchatrang & Dumarpadar

The Kalahandi region in Orissa has several villages with no basic energy access. Apart from residences finding it difficult to manage daily chores, there is also a lack of infrastructure for basic activities such as printing, documentation, and other digital solutions which are found in neighboring towns and facilities from the governmental organizations, banks etc. Even with the basic photocopying printing facilities that one of the entrepreneurs in Sunger village had, they had to spend around INR 1000 per month travelling to purchase kerosene to run the generator. The other two entrepreneurs however were struggling with finding sustainable income through daily wage labour. After a detailed need assessment, locations were chosen where the solar digital solution model would work best i.e. locations that are more accessible that are strategically placed close to panchayat buildings, schools, government offices, shops etc. Once the financial models were worked out for all the three through the loans from two major banks and marginal money support from the governmental organizations, banks etc. Even with access to basic facilities, they were never able to do basic activities such as printing, documentation, and other essential chores there is also a huge lack of infrastructure and entrepreneur facilities from the governmental organizations, banks etc. Even with access to basic facilities, they were never able to do basic activities such as printing, documentation, and other essential chores.

After a detailed need assessment, locations were chosen where the solar digital solution model would work best i.e. locations that are more accessible that are strategically placed close to panchayat buildings, schools, government offices, shops etc. Once the financial models were worked out for all the three through the loans from two major banks and marginal money support from the governmental organizations, banks etc. Even with access to basic facilities, they were never able to do basic activities such as printing, documentation, and other essential chores.

The first entrepreneur with an existing small shop has seen an increase of 200% in his income (earning around INR 10,000 a month post intervention) and the other two entrepreneurs who were daily wage labourers pre-intervention have been earning around INR 12,000 with a significant improvement from their earlier INR 1500 earnings. The EMI of around INR 1500 to INR 2000 has been decided considering their change in income. So, the strategically implemented solar digital service centers not only help the entrepreneurs are not only happy about their earnings, but also express their sense of empowerment as they are providing basic necessary services needed for the community.

CASE STUDY
Shridevi Melavanki
Handicapped computer trainer and entrepreneur

Shri Guru Madvaleshwar Computer Talabetti Kendra; the basic computer training and photocopy centre are housed in an old Panchayat Kendra, the centre, and it has kept her busy since its inception around 6 months ago. But the situation was quite different pre-intervention. Shridevi, who along with her brother Praveen, are unfortunate to have been the victims of polio during their childhood. The situation was quite different pre-intervention. Shridevi, who along with her brother Praveen, are unfortunate to have been the victims of polio during their childhood. With both of them lost their walking abilities, they had to do all their jobs for a very long time, but were never successful apart from a couple of part-time stints. Considering the basic computer training experience Shridevi had acquired in the past, a solar powered computer set up with a printer and a photocopying machine were conceptualized, and established with the support of Gram Panchayat, and other members of the village community.

Today, Praveen drops Shridevi to the computer center in the morning in his modified two-wheeler, and on a weekday, she would have already have a few customers waiting with some documents to be photocopied. “There will be around 150-200 pages to photocopy every day, and now I earn around INR 300 a day. We have constant power-cuts here, so when people cannot get their copies done in nearby shops, they come to my shop, so the number of people coming here is increasing even more”, says Shridevi as she is serving a customer who had come with a few bank documents. Today, she is not only busy with printing and photocopying, but also using her experience in computers to conduct basic computer courses to a few village students. In the last few months since we started, I have trained 4 students, and currently there are 3 girls who come here to learn how to operate computer for basic applications, she charges around INR 900 for a three month course, and it’s made their financial conditions even better. Today almost everyone in the village of Neginhal knows about Shridevi and Praveen. Their constant efforts after the intervention have not only helped them beat the odds but also express their sense of empowerment as they are providing basic necessary services needed for the community.

CASE STUDY
Eeranna
Solar Refrigerator and IEC Entrepreneur

Indiganatha is located at the foothills of MM Hills, and has no access to grid electricity due to its presence deep inside the forest. All the hamlets at the MM Hills had no choice but to opt for decentralized energy. Indiganatha is also an important junction between Karnataka and Tamil Nadu, the neighboring state, and also is the last village on this path towards a more interior and popular religious destination, so acts as a nodal point of access to communication networks. Food and water, Eeranna, an entrepreneur who runs a shop at Indiganatha knew the market potential for cold fruit juice and drinks as the absence of it there was quite clear.

Mobile phones being prevalent in the area, a reliable charging point also had a great demand. So, considering the requirements, an Integrated Energy Center (IEC) was conceptualized in collaboration with Eeranna.

FINANCED BY AN MFI in which he was a member, Eeranna obtained a 25 year loan for INR 80,000 along with a margin money support. The implementation, specifically the refrigerator delivered with a great success, resulted in him making over INR 60,000 in the first 6 months itself where he had also earned a good bit from charging INR 10 to mobile charging for his customers. After paying over half of the loan amount in the first year itself, he was able to finish the payment much before the tenure. The investment made in the IEC along with a solar powered TV and a mixer to make fruit juices resulted in him making over the months and today, Eeranna has plans to invest in other solar appliances such as a wet grinder to assist his wife’s preparation of Dosa/idly batter.

Although the earnings ebb and rise depending on the season, overall, the implementation of IEC resulted in making a great impact on Eeranna’s family.

CASE STUDY
Thipperudrappa
Mobile Canteen Entrepreneur

Thipperudrappa is an entrepreneur who has converted his van into a mobile canteen that serves in the vicinity of National Highway 4 in the little town of Hiriyur, Karnataka. His experience with solar energy goes back to 8 years as he has reaped the benefits of it through solar lighting both in his house as well as the canteen. Having been served near the toll plaza on the highway for years, he knew he has an untapped access that’s very unique and constant, as almost all the hours of the day there will be a long queue of vehicles waiting to cross the toll gate, and plenty of instances exist driving using the milieu as a resting place. With an almost year long prevalent heat in this region, and the sheer number of trucks that take a pit stop over there, there was an obvious demand for cold products. But being mobile, it wasn’t easy to have a refrigerator for the entrepreneur.

A solar powered DC fridge with a 100 Ltr capacity was conceptualized, and implemented in his food van. The familiarity of the place and people around. Coupled with the real demand, he started making around INR 400-500 per day. Starting his day as early as 4:00 AM, he is able to serve for more than 1/2 hours a day, and charging around extra INR 2 per product as the ‘cooling charges’. He is able to earn extra margin on the products as well. The total cost of INR 10,000 financed by the bank, is being returned with an EMI of INR 300 per month and within 3 years from the installation, the loan will be repaid. He earns approximately INR 15,000 per month from the products kept in the fridge through his efforts combined with neat marketing strategies.
Conclusion

Through the ecosystem based approach, efficient technology, tailored financial models, ownership models, conducive policies, training programs and market linkages can be institutionalized.

By 2020, SELCO Foundation would have developed over 100 effective sustainable energy driven energy efficient livelihood interventions and built the ecosystem for many of those to be scaled up and replicated across for poor populations in various geographies. Interventions need to be innovated at the individual level, community level, stakeholder level and at the state level to challenge the status quo, create enabling conditions that can create opportunities for the poorest and truly transform societies.

This document captures the work done by SELCO Foundation to create a database of processes that can unlock innovations in technology, finance, market linkage and skill building. These processes when scaled via sharing of learnings, and approaches can result in a catalytic effect. Through the 65 specific livelihood interventions detailed out in the previous pages, the document makes an effort to bring about the viability of decentralized renewable energy for various productive applications, and introduces processes around technology, finance, market linkage and skill building- which can be taken up by respective players to unlock the livelihood ecosystems in their own geographies.

The ecosystem based approach for livelihood interventions, transforms the technology and product centric approach into one that makes the user and the sustained impact at its core- providing for new avenues for partnerships, collaboration and cross learning.