

Unlocking the Pineapple Value Chain for India

Insights from Secondary Research

TABLE OF CONTENTS

- Introduction
- Understanding the Crop
- Mapping the Cultivation Lifecycle & Value Chain
- Gaps in the Ecosystem
- Learnings from Global and Indian Experience
- Insights & What This Means
- Program Pathways & End-User Mapping
 Opportunities for Collaboration

This deck synthesizes secondary research to identify systemic gaps and possibilities for decentralized interventions in pineapple value chains.

A SYSTEMS LENS ON THE PINEAPPLE VALUE CHAIN

At SELCO Foundation, we look at value chains not just as production-to-market pipelines, but as systems that need to work for both people and the planet. That means:

Enabling climate-resilient livelihoods

Unlocking economic potential equitably

Strengthening institutions, not just infrastructure

This deck synthesizes insights from secondary research to explore how such an ecosystem approach can be applied to pineapple – a high-potential but under-leveraged crop especially in Northeast India.

PINEAPPLE AS A FOCUS COMMODITY

Pineapple ranks among the

TOP 5 TROPICAL FRUITS

consumed worldwide.

It is produced on a massive scale –29.96 million metric tonnes globally (2023), with key producing countries including Indonesia, the Philippines, and Costa Rica.

While countries like Costa Rica have built integrated export-oriented systems, many re-export hubs in Europe (e.g., the Netherlands) capture much of the export value.

Pineapple requires relatively low water and is well adapted to tropical and hilly climates, making it a resilient option in the face of climate change.

THE UNTAPPED POTENTIAL OF PINEAPPLE IN THE NORTH EAST REGION OF INDIA

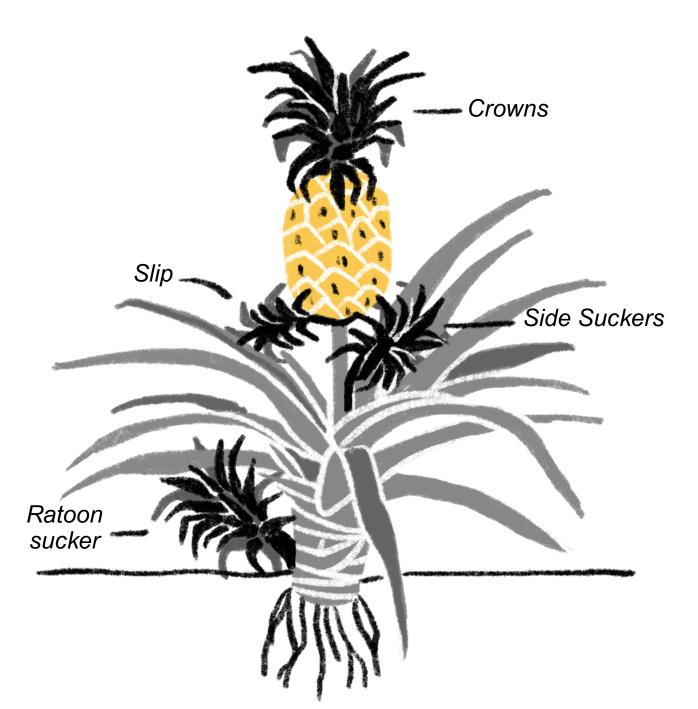
NORTH-EAST INDIA contributes to over

50% of India's pineapple production, with major clusters in

Assam, Meghalaya, Tripura and parts of Manipur & Mizoram.

Despite this scale:

- Value addition remains minimal
- Infrastructure (processing, storage) is underutilized
- Farmers face high post-harvest losses and low prices in peak season
- Institutional and market ecosystems remain fragmented


These structural bottlenecks reinforce income insecurity and missed enterprise opportunities-which is precisely where SELCO Foundation's ecosystem approach can add value.

UNDERSTANDING THE CROP AND ITS CHARACTERISTICS

Pineapple is a perennial crop grown on undulating and hilly terrain – suitable for rain-fed farming.

Propagation is primarily through **suckers**, **slips**, **or crowns**, sourced from previous cycles or neighbours.

Cultivation is labour-intensive; planting to first harvest takes 18–24 months, after which farmers harvest twice a year–summer (sweeter, better prices) and winter (sourer, lower prices).

Key challenges include:

Labour-intensive weeding: 3 rounds/year, each taking 1-2 weeks of hard manual work.

Challenging Harvest Conditions: During the 6-10 week peak, farmers harvest up to 3 times/week as fruit matures unevenly. Manual harvesting with sickles adds to drudgery.

No viable storage: Farmers usually sell at farmgate the same day or keep in bamboo baskets overnight. Pineapples are highly perishable and unsuitable for conventional cold storage (<7-8°C causes chilling injury).

Lack of processing: Unsold or overripe fruit is diverted to home use (jam, juice), reducing potential income. Without nearby processing (pulp/slice) units, farmers cannot extend shelf life or add value; such infrastructure is only now emerging under government schemes.

UNDERSTANDING THE CROP AND ITS CHARACTERISTICS

Variety	Region	Characteristics	Suitability
Queen	Meghalaya, Tripura	Small, high sweetness (TSS ~16), spiny leaves	Fresh market, fibre extraction
Kew	Assam, West Bengal	Large fruit (~1.5–2.5 kg), cylindrical, juicy	Canning, juice processing
Mauritius	Karnataka, Kerala	Medium, early maturing	Fresh, juice
MD2 (hybrid)	Global (Costa Rica, Philippines)	Very sweet, long shelf life, uniform size	Export quality, high-end retail

PACKAGE OF PRACTICES (AS PER MIDH, GOVT. OF INDIA) | CULTIVATION LIFECYCLE

Traces the journey from land preparation to replanting, covering 4 crop cycles over ~4 years

Land Preparation

Light tilling/clearing, bunding for slopes, drainage channels where needed.

Planting Material Selection & Treatment

a. Suckers, slips, or crowns b. Trimmed, sun-cured, treated with fungicide/biological solutions.

Planting Systems (geography-specific)

a. Contour Planting (hilly areas): 30% higher density, reduces soil erosion.

b. Trench Planting (coastal areas): Conserves soil moisture, less water loss.

c. Flat Bed Planting (plains with good water availability): Simpler, used where water is not limiting.

Weeding & Mulching

a. Weeding ~3 times/year. b. Mulching (plastic/organic) for moisture retention and weed suppression.

Use of Ethrel/NAA ensures uniform flowering and planned harvests.

Pest & Disease Management

Monitoring + integrated practices(botanicals /approved sprays).

Irrigation

Rain-fed; supplemental

Nutrient **Management**

Organic manure at planting + NPK fertilizers in cycles. Lime application if soil is acidic.

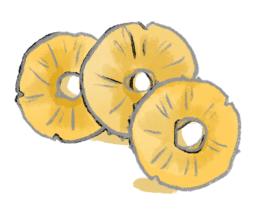
Harvesting

First harvest: 15-18 months after planting. Subsequent harvests: Two per year (summer & winter). Ratooning (regrowth cycle) can be done for 3 cycles

i.e 6 harvests over 3 years

Field Rotation

After 4 years, field is replanted. Old biomass (leaves, stem, crown) → used for fibre, compost, or bio-products.


PROCESSING & PRODUCT STREAMS

FRESH FRUIT PATHWAY

Sorting, packing
Direct sale
(local/national/export)

PROCESSED FRUIT PATHWAYS

Slicing

Dried pineapple, canned slices, fresh-cut retail packs Machines: slicer, dehydrator, retort, sealing line

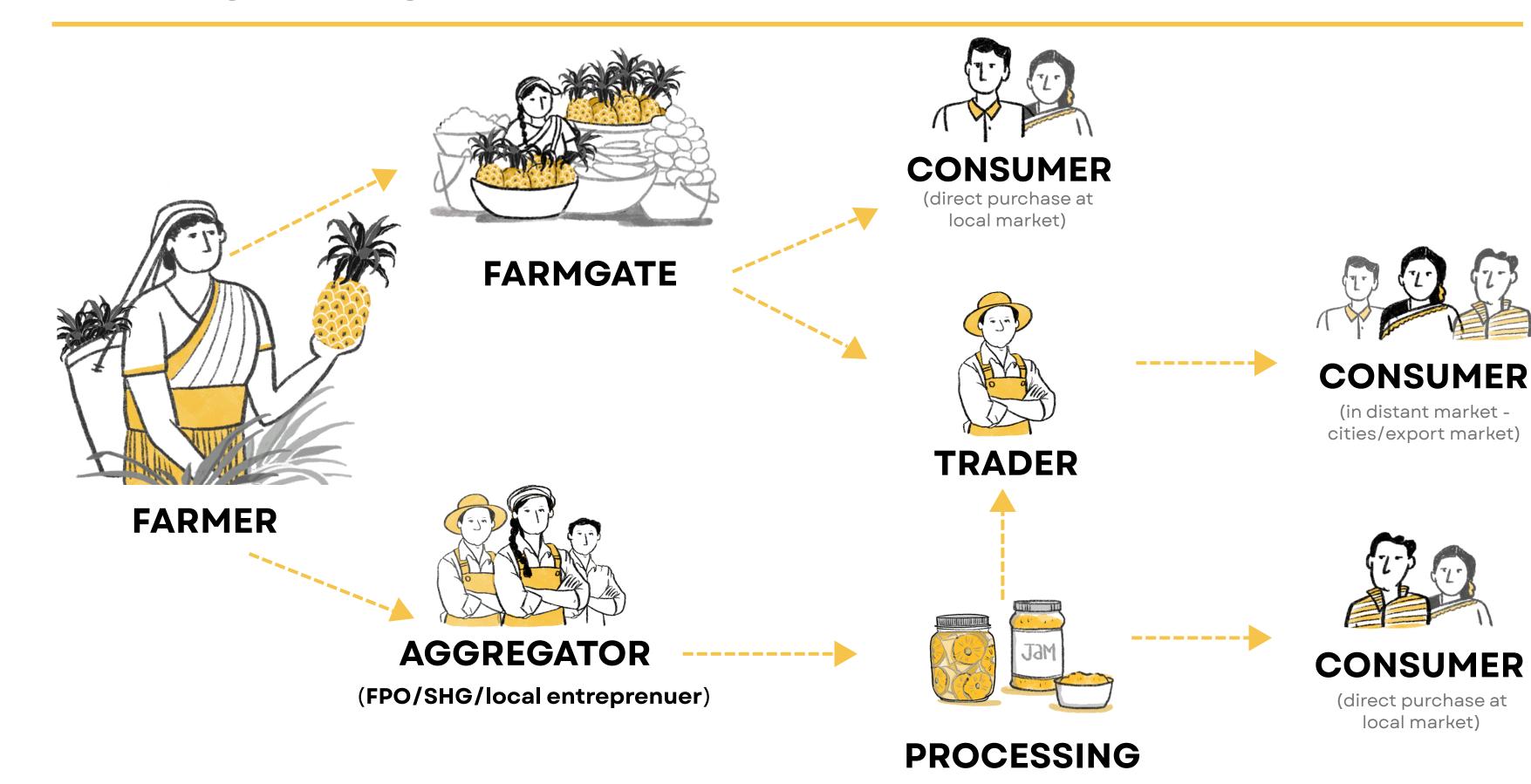
Chopping+Fermenting

Pickles, chutneys, sauces Machines: chopper, fermenter, pasteurizer

Juice, concentrate, jam, jelly, preserves Machines: pulper, extractor, kettle, bottler

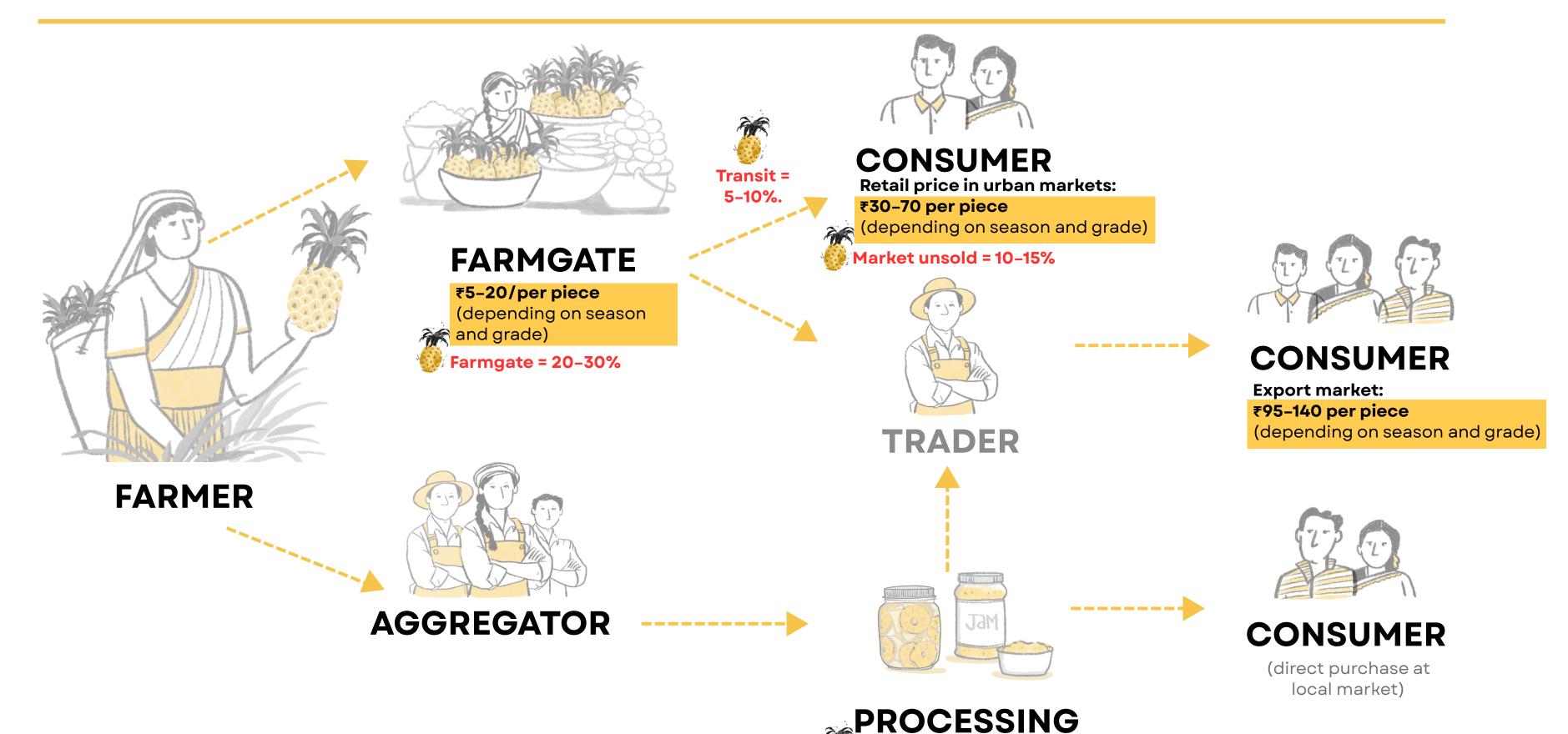
Crushing+Fermenting

Wine and vinegar
Machines: crusher,
fermentation tank, bottling
setup


BY-PRODUCT UTILIZATION

	Plant Part	Main Uses	Tech Involved
	Peel	Bioethanol, pectin, animal feed	Fermenter, dryer
	Core	Candied snacks, vinegar	Slicer, juicer
	Crown	Fibre extraction, compost	Pulper, extractor
	Stem	Bromelain enzyme, compost	Crusher, filtration
	Pomace	Feed, vinegar	Fermenter, drier
	Leaves	Fibre for textiles/paper	Decorticator, chemical extractor

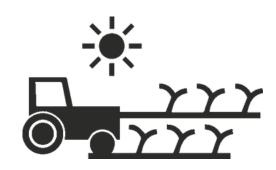
End-of-lifecycle biomass (especially leaves) offers fibre potential – especially during field rotation.



MARKET CHANNELS

MARKET CHANNELS: COSTS AND WASTAGE INSIGHTS

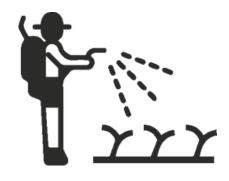
Processing losses = 5-10%



WHY THE VALUE CHAIN FAILS BEFORE IT EVEN BEGINS?

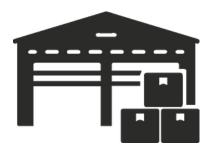
Most pineapple value chain interventions focus on processing, marketing, or export readiness.

But unless upstream issues are addressed – from how the fruit is planted, harvested, and handled – downstream solutions will remain underutilized.


Upstream Production Barriers Undermining the Value Chain:

Low-density planting →

lower yield per acre


not enough volume for aggregation

Manual harvest & weeding →

high drudgery, delays

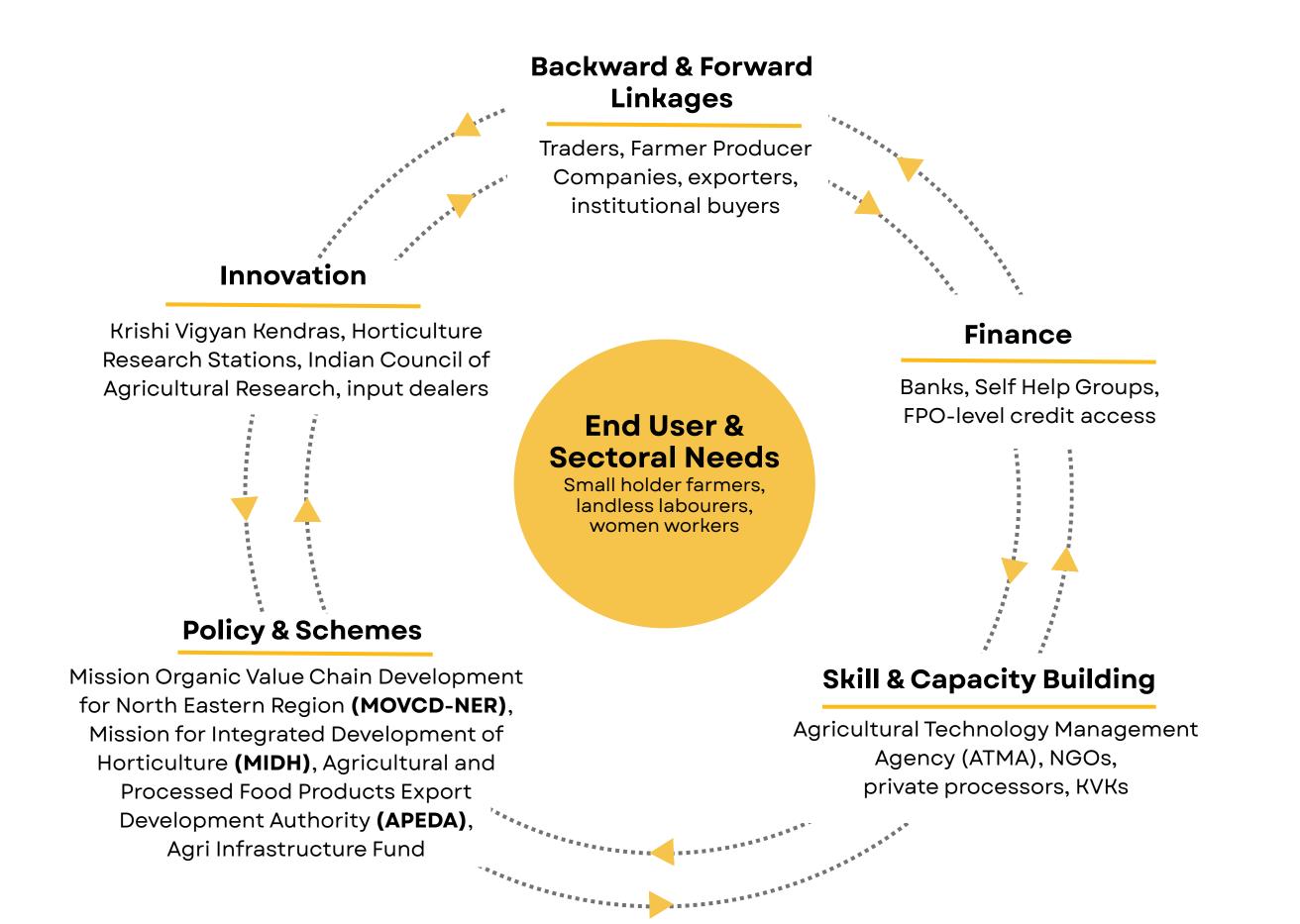
over ripeness

No sorting or storage →

poor shelf life

buyers reject fruit

Seasonal oversupply →


no scheduling

price crashes

To truly strengthen the base, efforts need to combine input support with effective PoPs, timely practices, technology, and market intelligence.

ECOSYSTEM MAPPING – WHO HOLDS THE CHAIN TOGETHER?

For pineapple to evolve into a robust livelihood ecosystem, six interconnected pillars must work in coordination.

Today, these actors exist – but are siloed, underequipped, or misaligned with each other's needs.

FROM FIELD TO MARKET: WHAT'S MISSING ACROSS THE PINEAPPLE VALUE CHAIN?

	Stage	Recommended Practice (PoP)	What's Happening	Gaps / Bottlenecks
1.	Input & Land Prep	Proper field sanitation, raised beds, soil testing, manure application, sucker treatment	Farmers rely on traditional prep; no testing; suckers sourced from own field or neighbours, untreated	Poor planting material → lower yield; pest/disease risks; soil fatigue
2.	Planting & Crop Management	High-density spacing (double-row), mulching, scheduled weeding (3x), bio inputs	Irregular spacing; no mulching (costly); manual weeding only	Low productivity; high labour drudgery; few adopt PoP
3.	Irrigation & Flower Induction	Drip irrigation where possible; ethrel-based induction at 7-9 months	Entirely rain-fed; induction done inconsistently	Seasonal uncertainty; irregular fruiting cycles
4.	Harvesting	Timed harvest for optimal sweetness and market alignment; harvesting tools	Manual (3/week); summer = sweeter, winter = sourer and less valued	Harvesting drudgery; no grade sorting; 30% wastage in glut
5.	Post-Harvest Handling	Sorting, grading, packaging, pre-cooling	Minimal; packed in bamboo baskets or plastic sacks	Poor shelf life; loss in transit; inconsistent quality
6.	Processing / Value Addition	Pulps, jams, slices, candy, juice, vinegar, fibre (leaves)	Machines present but underutilized; slicing & canning infra absent	Power issues, skill gaps, lack of product-market fit
7.	By-product Utilization	Peel, stem, crown, pomace → fibre, feed, vinegar, bromelain, biochar	Some awareness, but no commercial by-product ecosystem	Untapped revenue stream; high organic waste load

The gap is not lack of recommendations, but the disconnect between knowledge, resources, and coordination – processing infra exists but isn't used; PoPs exist but are not followed.

Interventions must bridge these divides, not just replicate them.

LEARNINGS FROM GLOBAL & NATIONAL EXPERIENCE

	Theme	Insights
1.	Export-Oriented Production	Learning: Costa Rica and the Philippines dominate exports by standardising one variety (MD2), enforcing PoPs, and ensuring traceability/certification. Reliable infrastructure (power, labs, nurseries, cold chain) underpins the system.
		Relevance: For NE India, outright varietal replacement risks biodiversity loss. Instead, the opportunity is to standardise within local varieties (Queen, Kew) through better nurseries, grading, and Brix-based quality checks – making them competitive without erasing local strengths.
2.	Aggregation + Contract Farming	Learning: Models like Del Monte (contract farming) and Ghana's farmer cooperatives show how aggregation and forward purchase agreements prevent glut-season price crashes. Relevance: NE India's FPCs often lack real aggregation power. Building functional federations with buyer tie-ups could stabilise prices and create consistent supply without forcing farmers into exploitative contracts.
3.	Climate Adaptation	Learning: In Nigeria and Ghana, bio-mulching, intercropping, and solar irrigation help manage erratic rainfall. Relevance: NE India's monsoon variability mirrors these challenges. Demonstrating climate-resilient PoPs (mulching, high-density planting, mixed cropping) is crucial to reduce vulnerability and labour burden while sustaining yields.

LEARNINGS FROM GLOBAL & NATIONAL EXPERIENCE

	Theme	Insights
4.	Infrastructure + Processing	Learning: Kerala's Vazhakulam cluster and Thailand's modular processing hubs thrive on reliable energy, water, cold chain, and demand-aligned machinery (slicers, pulpers, blast freezers). Relevance: In NE India, many MOVCD-funded centres remain idle due to poor power supply and weak business models. The clear takeaway: energy-resilient, decentralised processing hubs + long-term handholding for FPCs are non-negotiable.
5.	Policy & Ecosystem Support	Learning: Thailand and the Philippines coordinate pineapple policies through sector boards, aligning subsidies, infrastructure, and exports. Relevance: India has multiple schemes (MOVCD, MIDH, SFURTI, AIF), but poor convergence means wasted resources. A cluster-level coordination model, integrating horticulture, MoFPI, and rural development, can unlock synergy.

Lesson from global: Productivity and exports thrive where systems are standardised, aggregated, and well-coordinated.

Lesson for NE India: Adapt, don't copy – interventions must align with biodiversity, climate realities, and farmer livelihoods.

KEY INSIGHTS FROM SECONDARY RESEARCH

Mismatch Between Production and Value Realization

NE India produces large volumes of pineapple – but poor aggregation, lack of grading, and minimal value addition cap income potential.

Infrastructure Exists, But Ecosystems Don't

Processing units built under MOVCD and PMFME remain idle due to unstable power, lack of skilled operators, and no market tie-ups.

The Value Chain is Fragmented and Siloed

Cultivation, processing, and marketing are handled by different actors – with little coordination between departments, FPOs, or schemes.

Traditional On-Farm Practices Limit Productivity

Low-density planting, no mulching, high drudgery, and rain-fed dependence reduce yield quality and increase labour costs.

Market Volatility + Perishability = High Losses

In peak season, farmers face **price crashes and up to 30% wastage** due to lack of cold storage, aggregation, or demand-side intelligence.

By-Products Offer Untapped Enterprise Potential

Leaves, core, peel, and stem could support micro-enterprises (e.g., fibre, feed, enzymes) – but there are no operational models yet.

ELCO Foundation

WHERE DO WE GO FROM HERE?

Having understood the systemic gaps and opportunities across the pineapple value chain, this section outlines potential pathways to strengthen the ecosystem – not just through infrastructure or schemes, but by enabling strategic convergence, adaptive practices, and institutional facilitation.

These program directions are not one-size-fits-all. They depend on:

- Typologies of end users
- Existing public schemes and policies
- Readiness of clusters for demonstration, processing, aggregation, and market linkage

What follows is a synthesis of who the actors are, what already exists, and how interventions can be tailored across contexts.

NOT ALL ACTORS IN THE PINEAPPLE ECOSYSTEM FACE THE SAME CONSTRAINTS OR REQUIRE THE SAME SOLUTIONS.

	Typology	Description	Key Needs / Gaps	Role in Ecosystem
1.	Individual Farmer	Smallholder, often <1 acre; mostly rain-fed; follows traditional practices	Training on PoP, access to sucker nurseries, irrigation support, market intel	Primary cultivator, sells to traders or FPOs
2.	Clustered SHGs / IVCS	Women's groups or village- level collectives managing own land	Exposure to post-harvest handling, potential for micro-enterprises in fibre or drying	Labour, processing, packaging
3.	FPOs / FPCs	Registered farmer collectives with processing infra (MOVCD-supported)	Power access, trained ops staff, working capital, buyer tie-ups	Aggregation, processing, potential anchor for market
4.	Local Processors / Entrepreneurs	Emerging or informal actors doing value addition at small scale	Access to tech, packaging support, demand linkages	Build regional processing footprint

SCHEMES SUPPORTING THE PINEAPPLE ECOSYSTEM

Stage	Key Scheme(s)	Support Provided	Gaps & Opportunities
Production	MIDH	Training, PoP, quality seeds	Low awareness, limited field trainers, weak monitoring
Infrastructure	MOVCD-NER, Agri Infra Fund	Processing/Storage support, infra loans	Under-utilized infra, power/staff gaps, no cold chain, poor maintenance
Processing	PMFME	Equipment subsidy, cluster support	Complex application, low awareness, few processors, weak linkage
Marketing	APEDA, SFAC	Export/domestic market promotion	Lack of aggregation, no standards, poor branding/packaging
Finance	NABARD, NCDC	Infra funding, business loans	FPOs lack business plans, access, collateral & literacy issues

WHERE INTERVENTION IS POSSIBLE: THEMES AND ENTRY POINTS

Based on secondary insights, the following thematic areas present the most promising entry points for catalysing systemic change – in alignment with what already exists on the ground.

	Theme	Intervention Scope	
77700	Production Practices	Demonstration plots for high-density planting & bio mulching	
	Energy Access	Solarize processing units to overcome power barriers	
	Market Linkages	Tie-ups with buyers for Grade A/B fruit; explore slicing, drying and canning units	
P. J.	Aggregation	Facilitate FPO federations or clusters for volume-based negotiation & exports	
	Processing Skills	Hands-on training on value addition & machine ops	
	By-product Utilisation	Support pilots for leaf fibre (textile), peel compost, and wine/vinegar units	
	Policy Convergence	Bring together MoFPI, horticulture, rural dev for joint planning at cluster level *** SELCO Found	

The Northeast already grows pineapple at scale.

The challenge – and opportunity – is to convert that production into prosperity.

This isn't about pineapple alone – it's about building equitable, decentralised, climate-resilient rural economies.

LET'S CO-CREATE IT.

If you're working with rural communities, FPOs, or institutional partners in the North East – or building climate-resilient agri-value chains anywhere – we'd love to collaborate.

Reach out to us to explore ideas, align efforts, or pilot together.

